Не один год
Сегодня мы относим
Длинные некодирующие РНК определяются как молекулы, длина которых превышает 200 нуклеотидных оснований (цифра взята довольно-таки произвольно) и которые не кодируют белки, что отличает их от информационной РНК. Двести оснований — нижний предел размера. Самые крупные из таких некодирующих РНК могут насчитывать по сотне тысяч оснований. Подобных РНК множество, хотя ученые расходятся во мнении относительно их общего числа. По различным оценкам, в геноме человека их содержится от 10 тысяч до 32 тысяч1,2,3,4
. Но хотя длинных некодирующих РНК существует много, уровень их экспрессии обычно не так высок, как у классических информационных РНК, кодирующих белки — как правило, менее 10% от уровня экспрессии средней информационной РНК5.Такая сравнительно низкая экспрессия любой из длинных некодирующих РНК — одна из причин, по которым на них до недавних пор не обращали особого внимания. В сущности, при анализе экспрессии молекул клеточной РНК длинные некодирующие РНК раньше просто не удавалось надежно детектировать, поскольку методы анализа не отличались достаточной чувствительностью. Но теперь ученые знают о существовании таких РНК, а следовательно, могли бы полагать, что сумеют полностью проанализировать геном любого организма (в том числе и человеческого) и предсказать существование таких РНК, просто исходя из вида ДНК-последовательности. В конце концов, генетики отлично научились делать такие предсказания для генов, кодирующих белки.
Однако для длинных некодирующих РНК это не так-то просто по целому ряду причин. Известно, как идентифицировать предполагаемые гены, кодирующие белки, поскольку такие гены обладают некоторыми удобными свойствами. Возле начала и конца таких генов есть определенные последовательности, которые помогают нам их искать. Кроме того, они кодируют предсказанные нами аминокислотные звенья, что еще больше укрепляет нас в уверенности: мы имеем дело с геном, кодирующим белок. Наконец, большинство генов, кодирующих белки, окажутся похожими, если рассматривать определенный ген у разных видов. А значит, выявив «классический» ген у животного вроде иглобрюха, легко будет в дальнейшем использовать найденную последовательность как основу для анализа человеческого генома с целью выяснения, имеется ли похожий ген у нас самих.