В этом объяснении как бы подразумевается, что длинная некодирующая РНК транскрибируется на гене, чьи гистоны атакуются главным репрессором или другими эпигенетическими ферментами (или же она транскрибируется рядом с этим геном). Трудно выяснить, как обстоит дело в реальности. Существующие данные вроде бы подтверждают: так и есть. Главный репрессор может связываться со всевозможными молекулами длинных некодирующих РНК. Комплекс, содержащий главный репрессор, способен распознавать те или иные типы гистонных модификаций — в зависимости от компонентов самого комплекса. Эти компоненты могут оказаться различными в разных клетках. «Сканируя» близлежащие гистоны, такие комплексы могут распознавать многообразные картины модификаций и усиливать их, добавляя к ним главные репрессивные модификации. А если данная область сильно насыщена модификациями, которые приводят к генетической экспрессии, этот комплекс может ингибироваться, и главный репрессор оставит гистоны в покое. Вот вам еще один пример того, что линейное мышление не всегда годится для рассуждений о том, что первично. Картина модификаций часто поддерживается или создается лишь как следствие комбинаций гистонных модификаций, уже имеющихся в геноме10,11
.Похоже, то же самое верно и для противоположного эффекта — когда активные участки остаются активными. Сообщалось о длинных некодирующих РНК, экспрессируемых на участках, где гены, кодирующие белки, находятся во включенном состоянии. Эти длинные некодирующие РНК остаются прикрепленными к тому геномному региону, где они вырабатываются. Тем самым они, вероятно, образуют своего рода третью нить в дополнение к двойной спирали ДНК. Эти длинные некодирующие РНК связываются с ферментами, которые нацепляют на ДНК метильные модификации. При этом такие РНК останавливают работу этих ферментов. А значит, гены данной области по-прежнему остаются в активном состоянии12
.Если вы неактивны, вы остаетесь неактивны
Может показаться странным, что эпигенетические модификации после клеточного деления всегда вновь появляются на нужной X-хромосоме. Приведем один довольно наглядный пример не из мира клеток. Допустим, у вас есть две бейсбольные биты. Одну из них вы покрыли магнитной краской (будем считать, что такая краска — аналог
Можно продолжить этот несколько чудноватый мысленный эксперимент. Даже если вы снимете цветки с биты и затем бросите ее в еще одну трубку, содержащую цветки с липучками-петельками, она снова покроется этими цветками. Можете даже ободрать с нее все диски, но если вы затем снова окунете магнитную биту сначала в первую, а затем во вторую трубку, такая бита все равно покроется цветками.
Собственно, сделать так, чтобы эта бита не покрылась цветками после погружения в две трубки, можно единственным способом — счистить с нее магнитную краску. По сути, именно это и происходит, когда женский организм вырабатывает яйцеклетки. Все инактивирующие метки удаляются с X-хромосом и из всех дочерних клеток. Иными словами, все яйцеклетки становятся «чистыми» — в том смысле, что они не передают инактивацию своему потомству. «Магнитную краску» придется заново нанести на одну из X-хромосом в ходе ранней стадии развития эмбриона.
Как заставить древних чужаков хранить молчание