Читаем Мусорная ДНК. Путешествие в темную материю генома полностью

Определяющий компонент каждого такого кластера — область мусорной ДНК, которая управляет экспрессией генов, кодирующих белки. Этот определяющий компонент называется областью, контролирующей импринтинг (ОКИ, imprinting control element, ICE). Представьте, что вам надо осветить комнату при помощи двенадцати лампочек. Если вы хотите менять уровень освещенности, можно использовать лампочки с разной светимостью и отдельные выключатели для каждой. Но это довольно трудоемкий способ контролирования общего уровня освещенности. Лучше организовать всю эту дюжину лампочек в единую цепь и управлять ими одновременно — с помощью обычного выключателя или реостата (если вам хочется большей плавности).

ОКИ действует как общий реостат, однако тут есть небольшое отличие от нашей электрической аналогии. ОКИ играет важную роль благодаря тому, что она способствует экспрессии длинной некодирующей РНК. Эта РНК способна подавлять экспрессию генов окружающего кластера. По сути, импринтинг зависит от двух типов мусорной ДНК: геномных областей, контролирующих импринтинг, и тех длинных некодирующих РНК, на которые ОКИ оказывают контролирующее действие. Если в определенном кластере включается длинная некодирующая РНК, она подавляет экспрессию входящих в этот кластер генов, кодирующих белки. С другой стороны, если длинная некодирующая РНК, управляемая ОКИ, подавляется, то гены кластера, кодирующие белки, могут активироваться.

Импринтинг в высочайшей степени зависит от мусорной ДНК и ее общения с эпигенетической системой. Область, контролирующую импринтинг, можно эпигенетически модифицировать. Экспрессия длинной некодирующей РНК зависит от того, метилирована ли ДНК в области, контролирующей импринтинг. Если метилирована, то это препятствует экспрессии данной некодирующей РНК. Если же ОКИ избежала метилирования, эта длинная некодирующая РНК все же будет экспрессироваться. В сущности, тут идут взаимозависимые процессы. Если длинная некодирующая РНК экспрессируется, то гены, расположенные в кластере на той же хромосоме, будут подавляться. Если же длинная некодирующая РНК не экспрессируется, гены, расположенные в кластере на той же хромосоме, будут включаться. Длинная некодирующая РНК в зонах, подвергшихся импринтингу, иногда может иметь невероятную длину, доходящую до 1 миллиона нуклеотидных оснований: ошеломляющая цифра5.

К сожалению, мы пока довольно поверхностно разбираемся в конкретных механизмах, используемых длинной некодирующей РНК для подавления экспрессии близлежащего кластера генов. Здесь тоже наверняка не обошлось без эпигенетической системы, которая помогла внести репрессивные эпигенетические модификации в гены, кодирующие белки. Если в развивающемся эмбрионе подавляются ключевые эпигенетические гены (скажем, главный репрессор, с которым мы познакомились в главе 9), некоторые из генов, подвергшихся импринтингу, экспрессируются, хотя при обычных условиях они бы оставались в выключенном состоянии6. И это верно не только для главного репрессора. Выключение других эпигенетических генов, порождающих репрессивные гистонные модификации, оказывает похожее воздействие7,8. Это лишний раз показывает, какую важную роль играет эпигенетическая система в выполнении инструкций, содержащихся в длинной некодирующей РНК. Вероятно, такие процессы происходят благодаря тому, что длинная некодирующая РНК привлекает соответствующие ферменты к кластеру, подвергшемуся импринтингу, тем самым таргетируя гистонные модификации генов, кодирующих белки.

Эпигенетические модификации есть и в самой ОКИ. Как и следовало ожидать, при метилировании ДНК в области, контролирующей импринтинг, именно гистонные модификации непосредственно влияют на отключение генов. Если же ОКИ не метилирована, то эти гистонные модификации влияют на включение генов. Характер распределения эпигенетических модификаций в ОКИ — один и тот же и во всей ДНК, и в ее гистонах9.

В ходе импринтинга определяющим фактором является то, метилирована ли мусорная ДНК, образующая эту область. Высказываются предположения, что сам процесс метилирования областей, контролирующих импринтинг, возник, когда подавление близлежащих паразитических элементов (мы описывали такие элементы в главе 4) стало распространяться и на соседние зоны. Возможно, это создало преимущество с точки зрения приспособленности, поэтому в ходе естественного отбора такая особенность передалась и последующим поколениям10. Но вот один интригующий факт. У самых примитивных млекопитающих — яйцекладущих существ вроде утконоса и ехидны — необычно мало паразитических элементов близ тех регионов генома, где мы могли бы ожидать найти области, контролирующие импринтинг у более высокоразвитых млекопитающих11.

Как провести импринтинг заново

Перейти на страницу:

Все книги серии Universum

Растут ли волосы у покойника?
Растут ли волосы у покойника?

В науке часто возникают мифы, которые порой отличаются поразительной живучестью. Они передаются из поколения в поколение, появляясь на страницах книг, на интернетовских сайтах, звучат в научных докладах и в разговорах обычных людей.Именно таким мифам и посвятил свою книгу известный немецкий популяризатор науки Э. П. Фишер. Он рассказывает, почему весь мир полагает, что пенициллин открыл Александр Флеминг, а родители троечников утешают себя тем, что великий Эйнштейн в школе тоже не был отличником. Фишер говорит и о мифах, возникших в последние годы, например, о запрограммированности нашей жизни в генах или о том, что мы должны в день выпивать два литра воды. Вероятно, многие с Фишером где-то и не согласятся, но его книга наверняка заставит читателя улыбнуться, а потом задуматься о довольно серьезных вещах.2-е издание.

Эрнст Петер Фишер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Коннектом. Как мозг делает нас тем, что мы есть
Коннектом. Как мозг делает нас тем, что мы есть

Что такое человек? Какую роль в формировании личности играют гены, а какую – процессы, происходящие в нашем мозге? Сегодня ученые считают, что личность и интеллект определяются коннектомом, совокупностью связей между нейронами. Описание коннектома человека – невероятно сложная задача, ее решение станет не менее важным этапом в развитии науки, чем расшифровка генома, недаром в 2009 году Национальный институт здоровья США запустил специальный проект – «Коннектом человека», в котором сегодня участвуют уже ученые многих стран.В своей книге Себастьян Сеунг, известный американский ученый, профессор компьютерной нейробиологии Массачусетского технологического института, рассказывает о самых последних результатах, полученных на пути изучения коннектома человека, и о том, зачем нам это все нужно.

Себастьян Сеунг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы
Российские университеты XVIII – первой половины XIX века в контексте университетской истории Европы

Как появились университеты в России? Как соотносится их развитие на начальном этапе с общей историей европейских университетов? Книга дает ответы на поставленные вопросы, опираясь на новые архивные источники и концепции современной историографии. История отечественных университетов впервые включена автором в общеевропейский процесс распространения различных, стадиально сменяющих друг друга форм: от средневековой («доклассической») автономной корпорации профессоров и студентов до «классического» исследовательского университета как государственного учреждения. В книге прослежены конкретные контакты, в особенности, между российскими и немецкими университетами, а также общность лежавших в их основе теоретических моделей и связанной с ними государственной политики. Дискуссии, возникавшие тогда между общественными деятелями о применимости европейского опыта для реформирования университетской системы России, сохраняют свою актуальность до сегодняшнего дня.Для историков, преподавателей, студентов и широкого круга читателей, интересующихся историей университетов.

Андрей Юрьевич Андреев

История / Научная литература / Прочая научная литература / Образование и наука