Продолжим тему соседей. Описываемые внутриклеточные взаимодействия ужасающе легкомысленны. Представьте себе свингерскую вечеринку 1970-х, только во много раз более разнузданную. Исследователи обнаружили, что у некоторых генов количество различных регуляторных областей, с которыми они взаимодействуют, доходит до 20. А у некоторых регуляторных областей количество генов, с которыми они взаимодействуют, доходит до десятка. Вероятно, не все эти взаимодействия происходят в одной и той же клетке в одно и то же время. Ученые показали главное: между генами и регуляторными регионами нет добропорядочных однозначных отношений «А и В». Нет, мы имеем дело со сложным набором взаимодействий, дающим клетке (или организму в целом) необычайно гибкие возможности регулирования всего этого пестрого узора генетической экспрессии19
. Нам еще многое предстоит выяснить об этих сетях и о том, как они действуют. Сейчас дело выглядит так: мусорная ДНК, формирующая промоторы, заводит наши генетические моторы, но есть и мусорная ДНК, формирующая длинные некодирующие РНК и энхансеры. Она-то и превращает двигатель из слабенького сандеровского в такой, который вполне может разогнать «вейрон» на автостраде жизни.От кустарного промысла до фабричного конвейера
Несомненно, образование петель между отдельными регуляторными областями и генами — явление примечательное. Однако в клетках происходит и череда других дистанционных взаимодействий, еще более впечатляющая. Чтобы осознать ее значение, совершим небольшой экскурс в историю. В Британии начала XIX века основную часть текстильных работ выполняла кустарная промышленность. В сущности, речь идет о надомном производстве. Каждое из таких хозяйств производило сравнительно немного. Если для какого-нибудь региона страны составить карту центров текстильного производства того времени, вы увидите множество отдельных точек, каждая из которых показывает дом, где велось производство. А полвека спустя, в эпоху промышленной революции, картина стала совершенно иной. Вместо довольно однородного распределения точек, как на полотне пуантилиста, вы увидите на карте лишь несколько больших пятен, показывающих расположение крупных фабрик.
В человеческой клетке каждого типа обычно включены тысячи генов, кодирующих белки. Эти гены распределены по нашим 46 хромосомам. Можно бы ожидать, что при анализе клеток те места, где расположены включенные гены, будут выглядеть как тысячи крошечных точек, разбросанных по всему ядру. Однако (схематически это показано на рис. 12.4) на самом деле мы увидим лишь примерно 300-500 более крупных пятен20
. Генетическая экспрессия в наших клетках — это вам не надомное производство. Она происходит в определенных местах ядра — на клеточных фабриках21.Рис. 12.4.
Точками обозначены позиции расположенных в ядре генов, кодирующих белки. Если бы эти гены располагались в ядре лишь в зависимости от своего положения на хромосомах, мы увидели бы диффузную картину (слева). На самом деле гены группируются друг с другом в трехмерном пространстве, создавая узор генетической локализации, показанный более крупными точками (справа).Каждая фабрика содержит от 4 до 30 копий фермента, создающего молекулу информационной РНК на основе матрицы ДНК. Кроме того, на фабрике имеется большое количество других молекул, которые требуются для выполнения этой работы22,23
. Ферменты остаются на месте, а нужный ген «прокручивается» через них в ходе своего копирования24. Чтобы ген добрался до фабрики, ДНК должна образовать петлю, дотягиваясь до нужной части клеточного ядра. Однако самый хитроумный фокус — в том, что на одной и той же фабрике может копироваться в информационную РНК более одного гена одновременно. Комбинация генов на той или иной фабрике не случайна. Как правило, там собираются гены, кодирующие те белки, которые выполняют в клетке родственные функции. Это как если бы на обычной фабрике у вас имелось несколько параллельных сборочных конвейеров. Как только все линии завершат выполнение своих индивидуальных задач, фабрика может собрать конечный продукт из получившихся компонентов. Одна фабрика делает лодки, другая выпускает миксеры. Фабрики в наших клетках обеспечивают скоординированную экспрессию генов. А значит, хромосомы одновременно образуют множество петель, сходящихся в одних и тех же областях.