Взгляните на любой снимок, запечатлевший Джексона Поллока за созданием его очередного шедевра в жанре абстрактного экспрессионизма11
. Скорее всего, вы увидите, что пол в его студии при этом забрызган красками. Но это не значит, что брызги и пятна краски на полу — часть создаваемой картины. И это не значит, что художник сознательно наделил их каким-то смыслом. Они являются просто неизбежным и несущественным побочным продуктом главного события. Возможно, то же самое относится и к физическими изменениям нашей ДНК.Многие скептически отнеслись к заявлениям участников проекта ENCODE еще и из-за чувствительности использовавшихся методов. В распоряжении ENCODE оказались значительно более чувствительные методы по сравнению с теми, которые применялись, когда наука только начала изучать геном. Это позволило исследователям обнаруживать чрезвычайно малые количества РНК. Критики опасаются, что применявшиеся методы слишком чувствительны и поэтому воспринимали даже фоновый геномный шум. Если вам достаточно много лет и вы еще застали аудиокассеты, вспомните, что происходило, когда вы сильно увеличивали громкость магнитофона. Обычно вы слышали при этом шипяще-свистящий шум на заднем плане. Но этот звук являлся не частью замысла музыкантов, а просто неизбежным побочным продуктом технических ограничений записывающей системы. Критики проекта ENCODE полагают: что-то подобное может происходить и в клетках. Иными словами, не исключена фоновая экспрессия каких-то случайных молекул РНК в активных участках генома. Происходит своего рода утечка РНК. Согласно данной модели клетка не занимается активным включением этих РНК: они просто случайным образом копируются в весьма небольших количествах. Это происходит из-за того, что поблизости идет массированное копирование. Прилив поднимает все лодки, а заодно и все щепки, деревянные обломки и выброшенные пластиковые бутылки, которые окажутся в это время в воде.
Проблема кажется довольно серьезной. Ведь в некоторых случаях исследователи обнаруживали
Впрочем, это еще не свидетельство того, что использовавшиеся методы оказались слишком чувствительными. Напротив: можно сделать вывод, что чувствительность наших методов пока недостаточна. Они еще не позволяют нам выделять отдельные клетки и анализировать все молекулы РНК в ней. Вместо этого приходится полагаться на выделение множества клеток, анализ всех имеющихся в них молекул РНК и последующий расчет, сколько молекул РНК в среднем находится в каждой клетке.
Проблема в том, что в результате мы не можем увидеть разницу между ситуацией, когда среди значительной доли клеток в пробе каждая клетка экспрессирует небольшое количество определенной РНК, и ситуацией, когда среди незначительной доли клеток в пробе каждая клетка экспрессирует большое количество определенной РНК. Эти два сценария показаны на рис. 14.4.
Рис. 14.4.
Каждый маленький квадратик изображает одну клетку. Цифры в квадратике — число молекул определенной РНК, вырабатываемых этой клеткой. Из-за ограниченной чувствительности методов определения исследователь анализирует целый набор клеток в совокупности. А значит, он может узнавать лишь общее число молекул РНК в этом наборе и не в состоянии провести различие между ситуацией, когда в каждой из 36 клеток содержится по две молекулы РНК (слева), и ситуацией, когда лишь две клетки (из совместно анализируемых 36) содержат по 36 молекул РНК (справа), — или любой другой комбинацией, когда общее число обнаруживаемых таким путем молекул РНК равно 72.Еще одна трудность состоит в том, что нам нужно убить все клетки, чтобы проанализировать их молекулы РНК. А значит, мы получаем лишь «моментальные снимки» экспрессии РНК, хотя в идеальном случае нам хотелось бы получить что-то вроде фильма, чтобы мы могли увидеть, как протекает экспрессия РНК в режиме реального времени. Эта проблема схематически показана на рис. 14.5.