Читаем Музыка сфер полностью

Определить положение звезды с помощью азимута и высоты несложно, однако этот метод обладает серьезным недостатком: координаты привязаны к точке, в которой находится наблюдатель, поэтому одна и та же звезда при наблюдении из Парижа и Лиссабона будет иметь разные координаты, так как линии горизонта в этих городах будут располагаться по-разному. Следовательно, эти данные астрономы не смогут использовать для обмена информацией о проведенных наблюдениях. Поэтому существует и другой способ определить положение звезд. В нем используются координаты, напоминающие широту и долготу земной поверхности, которые могут применять астрономы в любой точке земного шара. В этом интуитивно понятном методе учитывается положение оси вращения Земли и считается, что небесная сфера вращается вокруг нас (по этой причине ось вращения Земли в Античности называлась осью мира). В действительности, конечно, все обстоит наоборот: хотя нам кажется, что вращается небо, на самом деле это Земля вращается с запада на восток.

Рассмотрим плоскость, рассекающую небесную сферу перпендикулярно оси вращения, проходящей через центр Земли и небесной сферы. Эта плоскость пересечет земную поверхность вдоль большого круга — земного экватора, а также небесную сферу — вдоль ее большого круга, который называется небесным экватором. Второй аналогией с земными параллелями и меридианами будет небесный меридиан, проходящий через два полюса и расположенный в плоскости, перпендикулярной экватору. Так как все небесные меридианы, подобно земным, равны, нулевой меридиан можно выбрать произвольно. Выберем в качестве нулевого небесный меридиан, проходящий через точку, в которой находится Солнце в день весеннего равноденствия. Положение любой звезды и небесного тела определяется двумя углами: склонением и прямым восхождением, как показано на следующем рисунке. Склонение — это угол между экватором и звездой, отсчитываемый вдоль меридиана места (от 0 до 90° или от 0 до —90°). Прямое восхождение — это угол между точкой весеннего равноденствия и меридианом звезды, отсчитываемый вдоль небесного экватора. Иногда вместо прямого восхождения используется часовой угол, или угол, определяющий положение небесного тела относительно небесного меридиана точки, в которой находится наблюдатель.

Положение звезды, заданное экваториальными (A, D) и часовыми координатами (Н, D).

Преимущество второй экваториальной системы координат (склонения и прямого восхождения) очевидно: эти координаты будут неизменными вне зависимости от положения наблюдателя. Кроме того, в них учитывается вращение Земли, что позволяет скорректировать вносимые им искажения. Как мы уже говорили, видимое вращение небесной сферы вызвано вращением Земли. Похожий эффект возникает, когда мы сидим в поезде и видим, как рядом с нами движется другой поезд: если не смотреть на перрон, то нельзя определить, какой из поездов на самом деле тронулся с места. Нужна точка отсчета. Но если вместо двух поездов рассматривать Землю и небесную сферу, найти дополнительную точку отсчета будет не так-то просто.

В 1851 году француз Жан Бернар Леон Фуко (1819–1868) провел эксперимент, демонстрирующий движение нашей планеты относительно небесной сферы.

Он подвесил груз весом 28 килограммов на проволоке длиной 67 метров под куполом парижского Пантеона. Колебания маятника Фуко продолжались 6 часов, период колебаний составил 16,5 секунды, отклонение маятника — 11° в час. Иными словами, с течением времени плоскость колебаний маятника смещалась относительно здания. Известно, что маятники всегда движутся в одной плоскости (чтобы убедиться в этом, достаточно подвесить на веревке связку ключей и проследить за ее колебаниями). Таким образом, наблюдаемое отклонение могло быть вызвано только одной причиной: само здание, а следовательно, и вся Земля, вращались вокруг плоскости колебаний маятника. Этот опыт стал первым объективным доказательством вращения Земли, и маятники Фуко были установлены во многих городах.

Портрет Жана Бернара Леона Фуко и маятник в парижском Пантеоне.

Земля, которая кажется неподвижной, вращается не только вокруг своей оси, совершая полный оборот за 24 часа (что эквивалентно скорости примерно в 1600 км/ч, то есть 0,5 км/с, если мы находимся на экваторе), но и вокруг Солнца, совершая полный оборот за 365,2522 дня (со средней скоростью примерно 30 км/с, то есть 108000 км/ч). Более того, Солнце вращается относительно центра нашей галактики, совершая полный оборот за 200 млн лет и двигаясь со скоростью 250 км/с (900000 км/ч). Но и это еще не все: наша галактика удаляется от остальных. Таким образом, движение Земли больше похоже на головокружительную карусель в парке аттракционов: мы вращаемся вокруг себя, движемся в пространстве и описываем спираль с головокружительной скоростью. При этом нам кажется, что мы стоим на месте!

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги