Читаем Музыка сфер полностью

На циферблатах солнечных часов иногда изображают линию, которую описывает конец тени в разные дни. Так как построить эту линию для всех дней невозможно, ее обычно изображают только для четырех первых дней каждого сезона. Так, в Северном полушарии на циферблатах солнечных часов изображают следующие линии: линия 21 марта, первого дня весны (здесь рассматриваются астрономические времена года, которые отсчитываются от дней солнцестояния и равноденствия), когда Солнце находится в созвездии Овна; 21 июня — первый день лета, когда Солнце находится в созвездии Рака; 23 сентября — первый день осени, день осеннего равноденствия, когда Солнце находится в созвездии Весов, и 21 декабря, когда Солнце находится в созвездии Козерога. Следует отметить, что эти дни указаны лишь приближенно, день, когда Солнце входит в созвездие Овна, для каждого года рассчитывается отдельно. В Южном полушарии в первый день лета Солнце находится в созвездии Козерога, в первый день зимы — в созвездии Рака.

Слева — фотография вертикальных солнечных часов, где, помимо часовых линий, изображены зодиакальные линии. Справа — карманные солнечные часы с часовыми и зодиакальными линиями и компасом, необходимым для точного ориентирования часов.

На циферблаты многих часов нанесены не только эти линии, но и все зодиакальные линии, указывающие положение конца тени в первый день каждого знака зодиака. Строятся они по тем же правилам, что и линии для четырех времен года.

Зодиакальных линий на солнечных часах не двенадцать, а линий, отмечающих времена года — не четыре, так как некоторые из них совпадают. В первый день весны Солнце движется по небесному экватору, во второй день — вдоль линии, параллельной ему и расположенной чуть выше, в третий день весны — по линии, расположенной еще чуть выше. Так день за днем Солнце постепенно поднимается над горизонтом, пока не достигает максимального склонения в 23,5° в первый день лета. Во второй день лета Солнце начинает постепенно опускаться, и в конце концов в первый день осени оно вновь следует вдоль небесного экватора (напомним, что рассматриваются не календарные, а астрономические времена года).

Таким образом, весна, лето и дни равноденствий перекрываются. Следовательно, зодиакальные линии, соответствующие месяцам весны, совпадут с зодиакальными линиями летних созвездий, подобно тому как линия Овна (весеннего равноденствия) совпадает с линией Весов (осеннего равноденствия), линия Тельца совпадает с линией Девы, линия Близнецов — с линией Льва. Аналогично совпадают линии осенних и зимних знаков зодиака: Скорпиона и Рыб, Стрельца и Водолея, как показано на следующем рисунке.

Теперь посмотрим, как связаны солнечные часы и конические сечения. Для этого надо представить траекторию, вдоль которой следует Солнце каждый день относительно оси вращения Земли. Если мы представим, что Солнце испускает единственный луч, который проходит точно через конец гномона, то при вращении Солнца вокруг оси мира этот луч опишет коническую поверхность, вершиной которой будет конец гномона (напомним, что гномон всегда направлен вдоль оси вращения Земли).

Если мы рассечем этот конус плоскостью, параллельной экватору, то есть перпендикулярной оси вращения Земли, получим окружность. Подобные окружности будут зодиакальными линиями экваториальных солнечных часов. Радиус этих окружностей зависит только от склонения Солнца и длины гномона.

Зодиакальные линии экваториальных солнечных часов — это концентрические окружности с центром в точке пересечения гномона и плоскости часов.

Если мы рассечем поверхность конуса горизонтальной или вертикальной плоскостью, полученные сечения будут ветвями гиперболы. Их форма определяется широтой места и, очевидно, склонением Солнца в каждом из зодиакальных созвездий. В зависимости от склонения Солнца ветви гиперболы будут выпуклыми или вогнутыми, а в день равноденствия примут вид прямых линий. Если мы изобразим небесную сферу бесконечного радиуса и будем считать Землю точкой, то изображение конических сечений на плоскости горизонта в упрощенном виде будет выглядеть так, как показано на предыдущей странице.

Если конец тени гномона движется вдоль одной из зодиакальных линий или вдоль линии, заключенной между двумя зодиакальными линиями, то мы можем приблизительно определить день месяца. Единственно возможная ошибка, которую можно допустить в теплом климате, это перепутать времена года. К примеру, если конец тени гномона находится между линиями Овен — Весы и Скорпион — Рыбы, а с деревьев облетают листья, то на дворе октябрь, если же листьев на деревьях нет — февраль.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги