Читаем Музыка сфер. Астрономия и математика полностью

За несколько лет до наблюдений Жозеф Никола Делиль упростил метод Галлея и определил, что достаточно зафиксировать момент захода Венеры на диск Солнца или схода с него. Делиль начал оживлённую переписку с другими астрономами, чтобы подготовиться к наблюдениям. Многие участники проекта занялись сбором средств на его реализацию. В это время Франция и Великобритания участвовали в Семилетней войне, многие французские и британские астрономы были захвачены в плен войсками противника. Для наблюдения транзита 1761 года Французской Академией наук было организовано четыре экспедиции. Кассини отправился в Обсерваторию иезуитов в Вене и провёл наблюдения вместе с эрцгерцогом Австрии Иосифом. Александр Гуа Пингре, напротив, отправился на остров Родригес в Индийском океане. Вскоре после того как его корабль обогнул южную оконечность Африки, мыс Доброй Надежды, на горизонте появились английские корабли. От них участники экспедиции сумели скрыться, однако затем они должны были прийти на помощь французскому кораблю и потеряли таким образом много времени. В результате Пингре прибыл на место назначения всего за девять дней до расчётной даты транзита. Из-за плохой погоды ему не удалось увидеть начало и конец прохождения Венеры по диску Солнца, и он смог провести лишь некоторые измерения, когда тучи ненадолго рассеялись. Но и на этом злоключения французского астронома не закончились: остров был захвачен англичанами, и Пингре провёл в заключении почти три месяца, пока французы вновь не отвоевали остров. На обратном пути его корабль вновь был захвачен, и Пингре был вынужден высадиться в Лиссабоне, откуда прибыл в Париж по суше спустя год и четыре месяца с момента отплытия. Куда печальнее сложилась судьба Гийома Лежантиля, которая заслуживает отдельного рассказа (см. врезку на следующей странице).

Лондонское королевское общество профинансировало три путешествия: одно — на остров Святой Елены близ юго-западного побережья Африки, другое — в Ньюфаундленд, третье — в провинцию Бенкулу на острове Суматра. Последняя экспедиция по иронии судьбы также столкнулась с французским кораблём. В бою судно англичан было сильно повреждено, и капитан принял решение вернуться в порт. Со второй попытки участники экспедиции достигли мыса Доброй Надежды, но здесь им пришлось задержаться, так как провинция Бенкулу оказалась захвачена французами.

В проекте участвовали и испанские астрономы, которые вели наблюдения из Императорского колледжа в Мадриде и Обсерватории флота в Кадисе. Всего было проведено 120 наблюдений. По итогам анализа результатов астрономы получили различные значения параллакса Солнца: от 8,28'' до 10,60''. Причиной расхождений отчасти был упомянутый выше эффект чёрной капли, а также неточности при определении долготы мест наблюдений.

* * *

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика