Обычной причиной транслокаций являются нарушения в ходе клеточных делений. Представьте себе, что две хромосомы, первая и вторая, переплелись и в «узелке» произошел разрыв. После этого на месте разрыва обычно происходят срастания, но не всегда срастания происходят правильно — нередко хромосомы меняются кусками и образуется транслокация.
Схема кроссинговера.
А вот теперь разберемся в схемах, которые приведут нас к любопытнейшим выводам. Изобразим в виде прямых линий две непарные хромосомы. Далее предположим, что гены в хромосоме расположены точно бусы на нитке, лежат рядышком, один за другим, выстроившись в линию. Пусть в первой из наших, хромосом расположены (генетик сказал бы: локализованы) гены А, Б, В, Г и Д, а во второй Е, Ж, З, И, К. При этом мы, конечно, не знаем, в каком порядке расположены гены, да и вообще не уверены в том, что расположены они линейно. Однако в нашем распоряжении есть метод транслокаций, и при помощи этого метода мы свое предположение можем проверить. Как? Ну, для примера допустим, что произошла взаимная транслокация, причем в первой хромосоме разрыв произошел между Б и В, а во второй между И и К. Тогда мы получим новые хромосомы и новые, следовательно, группы сцепления. Одна из новых хромосом будет выглядеть так: А, Б, К. Она будет на препарате коротенькой. А вторая — Е, Ж, З, И, В, Г, Д, — напротив, будет иметь очень большую группу сцепления и большую длину на препарате.
Очевидно, именно так рассуждал Морган, когда планировал свои эксперименты. Но, конечно, он имел дело не с условными, а с реальными хромосомами, с реальными генами. Была проведена колоссальнейшая работа, в результате которой гипотеза о линейности расположения генов в хромосоме полностью подтвердилась.
Однако не метод транслокаций послужил в этом случае для Моргана основным. Как для создания теории линейности расположения генов, так и в дальнейшем, для создания хромосомных карт дрозофилы, основную роль сыграло изучение кроссинговера — перекрестов между генами хромосом-партнеров, составляющих пару в кариотипе.
Перекресты. Расстояния между генами
Обычно дрозофилы сероватые, но есть среди них «блондины»—золотисто-желтые. Это рецессивный признак, вызванный геном из первой хромосомы. Его обозначают буквой «у», от английского слова yellow — желтый. Раз есть рецессив, значит, есть и доминант к нему. Это признак серой окраски, а ген, его вызывающий, генетики обозначают как y+. Щетинки у дрозофилы дикого типа прямые (sn+), но у этого гена — он тоже из первой хромосомы — есть свой рецессив sn — извитые реснички, мухи здесь с «перманентом». Что случится, если желтотелую «прямоволосую» самку скрестить с серым «курчавым» самцом? В первом поколении все мухи окажутся серыми с прямыми щетинками — проявятся два доминанта. Но зато во втором поколении будет большой разнобой. И любопытно, что, кроме желтотелых с прямыми щетинками и серотелых «курчавых», появятся два новых класса: желтотелые «курчавые» и серотелые «прямоволосые». На первый взгляд все происходит в соответствии с комбинационным законом Менделя, однако это не так. По комбинационному закону должно было бы получиться 9:3:3:1, здесь же соотношения совершенно иные. Два новых класса, один из которых несет два доминантных гена, а другой — два рецессивных, появятся в равном числе, причем в сумме их число составит 21% от всех потомков. Непонятно? Еще бы, ведь я только начинаю объяснять механизм кроссинговера!
В период подготовки клеток к мейозу хромосомы-партнеры перекручены и меняются при этом участками. Обмен этот происходит тем чаще, чем дальше в хромосоме один ген отстоит от другого. Ген у самый крайний, он лежит в первой хромосоме дрозофилы, на левом ее конце. Ген sn, напротив, локализуется ближе к центру, отстоит от левого конца примерно на треть длины хромосомы. Любопытно, что ген маленьких крыльев (miniature), расположенный на правом конце той же хромосомы, дает с геном у перекресты в 62,7% случаев. В три раза больше расстояние по длине хромосомы, в три раза больше и процент перекреста. Естественно, что генетики обратили на это внимание и именно таким способом — путем вычисления процентов перекрестов — условились обозначать расстояния между генами.
Именно так были созданы хромосомные карты дрозофилы, кукурузы, кур, некоторых хромосом мышей, одной из хромосом рыбки гуппи. Такая карта выглядит линией с нанесенными на ней штрихами, каждый из которых ген. Гены помечены буквенными символами.
А нельзя ли увидеть?
Это, конечно, голос недоверчивого читателя. В самом деле: придумали какой-то не совсем понятный кроссинговер, понасчитали перекрестов, понарисовали сложнющих хромосомных карт. А вся хромосома-то еле видна даже под микроскопом! Дайте, пожалуйста, доказательства, иначе мы с недоверчивым читателем ни за что не поверим... Нельзя ли своими глазами все это увидеть?
Своими глазами? Если бы этот вопрос был задан генетику начала нашего века, он бы, наверно, пожал плечами: