Читаем Мысли о мыслящем. О частной реализации концептуального подхода к опыту экзистенции полностью

Представим, что каждый элемент x множества положительных вещественных чисел отображается точкой на числовой прямой. Каждому числу x, большему 1, поставим во взаимно-однозначное (биективное) соответствие число 1/x. Тогда интервал единичной длины (0, 1], рассматриваемый как множество точек, окажется больше интервала (1, ∞), поскольку всем точкам последнего будет соответствовать какая-то точка интервала (0, 1], и вместе с тем интервалу (0, 1] принадлежит точка 1, которой нет соответствия на интервале (1, ∞). Выражаясь проще: 1 > ∞ - 1. Если мы спроецируем таким же образом точки интервала (1, 2] на интервал [½, 1), то получим, что 2 - 1 = 1 - ½, т. е. 1 = ½ или 1 = 2 или 1 = 0 (в зависимости от преобразования равенства); если проделаем аналогичную операцию с интервалом (2, 4], то получим 1 = ⅛ или 1 = 8 и т. д. Эти абсурдные результаты — очевидное следствие того, что все рассматриваемые множества точек являются континуальными. С ними нельзя производить подобные операции. С другой стороны, сами по себе эти операции математически корректны и опираются на эмпирическую реальность. А вот понятия бесконечности и точки (которую можно представить как частное выражение понятия бесконечности: предел бесконечного деления) имеют к эмпирической реальности весьма косвенное отношение — это лишь экстраполяции нашего разума (в природе нет известных нам примеров актуальной бесконечности). Воображаемые точки не имеют размера и при этом занимают какое-то место в пространстве (имеют свои координаты) — конечно, такие парадоксальные объекты не могут считаться реальными сущностями. Поэтому определять с их помощью местоположение некоего простого (несоставного) материального объекта было бы неверно. Такие объекты сами могли бы рассматриваться как точки, образующие пространство, но уже не воображаемые, а реальные.

Все это, кажется, свидетельствует против антитезиса Канта (а заодно и апорий Зенона) и против представления о непрерывности пространства и материи. Кроме того, кажется очевидным, что в случае непрерывности материи было бы невозможно ее движение, перемещение, — ведь для него не будет свободного пространства (это верно и в том случае, когда под движениями материи понимаются флуктуации физического вакуума).

Напротив, доказательство тезиса кантовской антиномии выглядит весьма убедительным (вспомним также доводы Гильберта и Бернайса). Но что тогда придает целостность дискретной материи? К тому же, хоть движение и невозможно в заполненном пространстве, как оно возможно в дискретном, пустом?

Что может заставить переместиться объект, находящийся в абсолютной пустоте, на который не оказывается в данный момент никакого внешнего воздействия? Мы, конечно, можем предположить, что этот объект имеет свою внутреннюю структуру, которая и вынуждает его перемещаться (по инерции, сохраняя полученный ранее импульс, или даже самостоятельно). Но этим мы лишь перенесем фокус рассмотрения с самого объекта на составляющие его элементы, перемещение которых в пустоте точно так же нужно будет объяснить. Что же нам остается? Продолжать выбранный путь объяснения ad infinitum? Тогда мы вернемся к представлению о непрерывности материи.

А как объяснить сам факт сохранения положения или упорядоченного движения (по некой траектории) объекта в пустоте? Пустота, то есть отсутствие материи, вообще говоря, не есть что-то существующее. Она не состоит из точек, в которых объект может покоиться или через которые он может проходить. Другими словами, пустота не может выполнять роль «субстрата», поддерживающего материальные объекты. В противном случае она тоже должна быть чем-то материальным, вступающим во взаимодействие с объектами. Таким образом, мы вновь приходим к понятию непрерывной материи.

Итак, непрерывность материи представляется не менее обязательным условием существования мира, чем ее дискретность. Как можно примирить две эти противоположные позиции?

На первый взгляд, решением могла бы стать идея, примененная в теории бран (М-теории): физическая материя в своей основе подобна многомерной мембране. Допустим, что Вселенная — это трехмерная поверхность, вибрирующая (осциллирующая) в десятимерном, как в М-теории, пространстве. Получится, что материя нашего трехмерного мира непрерывна и вместе с тем в ней существуют дискретные волны (образующие материальные объекты), которые порождаются ее колебательным движением в других пространственных измерениях. Но это означает, что обозначенная выше проблема перемещения теперь относится к этим загадочным иным измерениям. То есть гипотеза о многомерности пространства вовсе не снимает вопрос о проблематичности движения материи в пустоте. Кроме того, не вполне ясен физический смысл «свернутых» пространственных измерений (помимо известных нам трех), в которых происходят осцилляции.

Перейти на страницу:

Похожие книги

Искусство войны и кодекс самурая
Искусство войны и кодекс самурая

Эту книгу по праву можно назвать энциклопедией восточной военной философии. Вошедшие в нее тексты четко и ясно регламентируют жизнь человека, вставшего на путь воина. Как жить и умирать? Как вести себя, чтобы сохранять честь и достоинство в любой ситуации? Как побеждать? Ответы на все эти вопросы, сокрыты в книге.Древний китайский трактат «Искусство войны», написанный более двух тысяч лет назад великим военачальником Сунь-цзы, представляет собой первую в мире книгу по военной философии, руководство по стратегии поведения в конфликтах любого уровня — от военных действий до политических дебатов и психологического соперничества.Произведения представленные в данном сборнике, представляют собой руководства для воина, самурая, человека ступившего на тропу войны, но желающего оставаться честным с собой и миром.

Сунь-цзы , У-цзы , Юдзан Дайдодзи , Юкио Мисима , Ямамото Цунэтомо

Философия