Читаем Мысли о мыслящем полностью

Однако принимать решения необходимо — и в повседневной практике, и при построении научных теорий, в обоих случаях допуская возможный риск их ошибочности. Стивен Хокинг, говоря о научных теориях, отмечал: «Любая физическая теория всегда носит временный характер в том смысле, что является всего лишь гипотезой, которую нельзя доказать. Сколько бы раз ни констатировалось согласие теории с экспериментальными данными, нельзя быть уверенным в том, что в следующий раз эксперимент не войдет в противоречие с теорией. В то же время любую теорию можно опровергнуть, сославшись на одно-единственное наблюдение, которое не согласуется с ее предсказаниями»[16]. При этом теория, по мнению Хокинга, не должна претендовать на подлинное познание реальности: «…Физические теории являются всего лишь создаваемыми нами математическими моделями, вследствие чего вообще не имеет смысла говорить о соответствии теории и реальности. Теории следует оценивать лишь по их способности предсказывать наблюдаемые явления»[17].

Впрочем, не все ученые с этим согласны. Роджер Пенроуз (ставший недавно нобелевским лауреатом) в отношении математической основы физики придерживается воззрения в духе платонизма: «Я не скрываю, что практически целиком отдаю предпочтение платонистской точке зрения, согласно которой математическая истина абсолютна и вечна, является внешней по отношению к любой теории и не базируется ни на каком “рукотворном” критерии; а математические объекты обладают свойством собственного вечного существования, не зависящего ни от человеческого общества, ни от конкретного физического объекта»[18]. Подобные взгляды, видимо, разделял и Генрих Герц: «Трудно отделаться от ощущения, что эти математические формулы существуют независимо от нас и обладают своим собственным разумом, что они умнее нас, умнее тех, кто открыл их, и что мы извлекаем из них больше, чем было в них первоначально заложено»[19].

С другой стороны, Гейзенберг предостерегал от чрезмерного увлечения формальной стороной научного познания: «Математика — это форма, в которой мы выражаем наше понимание природы, но не содержание. Когда в современной науке переоценивают формальный элемент, совершают ошибку, и притом очень важную...»[20]. А Эйнштейн однажды иронично заметил: «Как ни странно, можно математически вполне овладеть предметом, так и не разобравшись в существе вопроса»[21].

Действительно, с помощью математики можно доказать едва ли не все что угодно. Но где гарантия, что математически описываемые процессы будут по-прежнему соответствовать этому описанию на всем диапазоне возможных значений своих исходных параметров (пространственных, временных и т. д.)[22]? Ее довольно сложно обеспечить, если в первую очередь ищется математический аппарат описания, а уже после решается, какой физический смысл следует придать входящим в него математическим величинам. Но именно так зачастую и происходит в современной физике[23].

Самодостаточность и мощь инструментария математики могут создавать иллюзию реальности математических конструктов, даже если за ними в действительности не стоит никаких физических объектов. Тут можно провести аналогию с вербальными конструкциями. Я вполне могу написать: «Слон сидел на ветке возле своего гнезда». Это будет грамматически правильное предложение, состоящее из общеупотребимых слов и даже имеющее определенный смысл, но оно не будет соответствовать чему-то реальному. Примерно так может обстоять дело и с математикой. Она заимствует базовые понятия (числá, операции, геометрического объекта) из окружающего мира — это «слова» ее «языка», — устанавливает правила их употребления — свою «грамматику» — и на основе этого строит осмысленные «предложения». Однако нельзя полностью гарантировать, что результат не будет подобен предложению, приведенному выше. Например, в отдельных случаях «слоном, сидящим на ветке» может оказаться понятие бесконечности (подробнее об этом будет говориться в одной из следующих глав). Разумеется, «язык» математики более строг, чем обыденный, поэтому возможности им вольно оперировать, приводящие к абсурдным заключениям, не столь велики. Тем не менее на практике иногда приходится «ломать» математическую логику, вводя ограничения, запрещенные операции; встречаются и неразрешимые математические задачи. Так что слишком превозносить априорный характер математического знания — по примеру Юма и Канта — не следует.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия