Читаем Мыслящая Вселенная полностью

Вскоре после начала расширения Вселенной в распределении плотности вещества во Вселенной были случайные, очень маленькие неоднородности. В это время нейтрино имеет очень высокую энергию и проходит свободно сквозь любые сгустки вещества. Скорость нейтрино в это время приближается к скорости света. Поэтому нейтрино в определенной мере выравнивают неоднородности. При этом распределяются нейтрино более равномерно. Но это происходит только в малых пространственных масштабах в районах, сравнительно малых по линейным размерам нейтринных сгущений. Это и понятно, поскольку из сравнительно мелких сгущений нейтрино успевают вылететь и перемешаться с другими нейтрино достаточно быстро. При этом усредняются, сглаживаются все неоднородности. С течением времени все большие и большие (по размерам) неоднородности нейтрино успевают «рассосаться». Все это возможно только благодаря тому, что у нейтрино сохраняется очень большая скорость, которая близка к скорости света. Но с течением времени скорость нейтрино постепенно уменьшается. Уже примерно через 300 лет после расширения Вселенной скорость нейтрино становится значительно меньше скорости света. Поэтому нейтрино уже неспособно (ему не хватает скорости) вылетать из комков большого размера. Поэтому такие комки, плотность вещества в которых сначала только немного превышает среднюю, могут усиливаться тяготением, сгущаться и расти, пока среда не распадется на отдельные сжимающиеся облака из нейтрино.

Из сказанного выше можно заключить, что выравнивание плотности успело произойти только в участках с размерами, не превышающими 300 световых лет. В больших масштабах, то есть в нейтринных сгустках большего размера, повышенная плотность нейтрино сохранялась, поскольку нейтрино не успело из них вылететь. В последующий период скорость движения нейтрино резко падала. При этом взаимное их тяготение приводило к увеличению повышенной плотности. Затем эти сгущения дали начало нейтринным облакам. Из приведенных выше рассуждений следует, что масса этих нейтринных облаков должна определяться количеством тех нейтрино, которые находились в сфере радиусом 300 световых лет через 300 лет после начала расширения Вселенной.

Массу такого нейтринного облака можно рассчитать. Все необходимые данные для этого есть, поскольку масса покоя нейтрино определена. Такой расчет дает, что масса типичного нейтринного облака составляет 1015 солнечных масс. Специалисты утверждают на основании общефизического анализа, что каждое нейтринное облако должно приобрести не форму шара, а форму блина. Затем из таких облаков-блинов образуются соты, то есть выкристаллизовывается ячеистая структура.

Что же происходит с обычным (не нейтринным) веществом? Обычное вещество в начале расширения было распределено в пространстве почти равномерно. Масса его во много раз меньше суммарной массы нейтрино. В начальной стадии расширения Вселенной это вещество находилось в виде горячей плазмы. По прошествии трехсот тысяч лет после начала расширения обычное вещество настолько охлаждается, что из состояния плазмы оно превращается в нейтральный газ. К этому времени, спустя миллион лет после начала расширения, давление газа резко падает. Только потом холодный нейтральный газ начинает сгущаться в поле тяготения возникающих нейтринных облаков. При этом нейтральный газ стягивается к центральной части нейтринных облаков. Далее из этого сгущающегося нейтрального газа постепенно возникают скопления галактик, галактики и звезды. Значит, все выглядит так. В центре нейтринного облака-блина образуется большое скопление галактик, масса которого в 30 раз меньше массы нейтринного облака.

КОМЕТЫ


В переводе с греческого языка «комета» означает: «носящая длинные волосы». На самом деле кометы — это небесные тела неправильной формы, которые состоят изо льда с вкраплениями каменных и железных глыб, имеющих размеры порядка нескольких десятков километров. Когда комета приближается к Солнцу, ледяная поверхность кометы нагревается и лед начинает потихоньку таять и испаряться. Ядро кометы окружает слой, который состоит из газа, пыли, а также из частичек льда. Именно этот слой в лучах Солнца начинает светиться отраженным светом. Благодаря этому свечению комета становится заметной на небосводе. Чем ближе комета приближается к Солнцу, тем больше она нагревается. А это значит, что тем больше становится оболочка ее ядра. У кометы появляется «хвост», который состоит из той же пыли, газа и частичек льда. Образовавшийся хвост также начинает отражать солнечные лучи. Чем ближе комета приближается к Солнцу, тем больше ее хвост.

Ньютон доказал математически, что все кометы движутся по орбитам вокруг Солнца и подчиняются действию сил тяготения. Орбиты комет всегда очень вытянутые. Кометы видны только тогда, когда оказываются вблизи Солнца.

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки