Читаем MySQL: руководство профессионала полностью

MySQL 5.1 также поддерживает вариант HASH partitioning известного как linear hashing (линейное хэширование) , которое использует более сложный алгоритм для определения размещения новых строк, вставленных в разбитую на разделы таблицу.

Функция пользователя оценена каждый раз, когда запись вставлена или модифицируется. Это может также быть в зависимости от обстоятельств, когда записи удалены.

Обратите внимание: если таблица, которая будет разбита на разделы, имеет ключ UNIQUE, то любые столбцы, обеспеченные как параметры к HASH функции пользователя или на KEY column_list, должны быть частью того ключа. Исключительная ситуация: это ограничение не относится к таблицам, использующим NDBCluster.

3.2.3.1. LINEAR HASH Partitioning

MySQL также поддерживает линейное хэширование, которое отличается от регулярного хэширования тем, что линейное хэширование использует линейный алгоритм степени двух в то время, как регулярное хэширование использует модуль значения хэш-функции.

Синтаксически единственное различие между выделением разделов линейного хэширования и регулярным хэшированием: добавление ключевого слова LINEAR в предложение PARTITION BY, как показано здесь:


CREATE TABLE employees (id INT NOT NULL, fname VARCHAR(30),

lname VARCHAR(30),

hired DATE NOT NULL DEFAULT '1970-01-01',

separated DATE NOT NULL DEFAULT '9999-12-31',

job_code INT, store_id INT)

PARTITION BY LINEAR HASH(YEAR(hired)) PARTITIONS 4;


Данный выражением expr раздел, в котором запись сохранена, когда линейное хэширование используется, представляет собой номер раздела N из числа разделов num, где N получен согласно следующему алгоритму:


Находят следующую степень 2 большую, чем num. Назовем это значение V, это может быть вычислено как:V=POWER(2, CEILING(LOG(2, num)))


Например, предположите, что num=13.

Тогда LOG(2,13)=3.7004397181411.

CEILING(3.7004397181411) 4, а V = POWER(2,4) = 3.

Берется N = F(column_list) (V – 1).

Пока N >= num:

Берется V=CEIL(V/2)

Берется N = N (V – 1)


Например, предположите, что таблица t1 применяет линейное выделение разделов, имеет 6 разделов и создана, используя эту инструкцию:


CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)

PARTITION BY LINEAR HASH(YEAR(col3)) PARTITIONS 6;


Теперь примите, что Вы хотите вставлять две записи в t1: у одной значение столбца col3 равно '2003-04-14', а у другой составляет '1998-10-19'. Номер раздела для первой из них определен следующим образом:

V = POWER(2, CEILING( LOG(2,7) )) = 8

N = YEAR('2003-04-14') (8-1) = 2003 7 = 3

(3 >= 6 FALSE: запись сохранена в разделе #3

)


Номер раздела, где сохранена вторая запись, вычислен как показано здесь:

V = 8

N = YEAR('1998-10-19') (8-1) = 1998 7 = 6

(6 >= 6 TRUE: нужен дополнительный шаг

)

N = 6 CEILING(5 / 2) = 6 3 = 2

(2 >= 6 FALSE: запись сохранена в разделе #2

)


Преимущество в выделении разделов линейным хэшем в том, что добавление, удаление, объединение и разбиение разделов сделано намного быстрее, что может быть полезно, когда имеешь дело с таблицами, содержащими чрезвычайно большие количества данных. Недостаток в том, что менее вероятно, что данные будут равномерно распределены между разделами по сравнению с распределением, полученным используя регулярное выделение разделов hash partitioning.

3.2.4. KEY Partitioning

Выделение разделов ключом подобно выделению разделов хэшем за исключением того, что выделение разделов хэшем использует определяемое пользователем выражение, а хэш-функция для выделения разделов ключом обеспечена MySQL. Здесь MySQL Cluster использует для этой цели MD5(), а для таблиц, использующих другие типы памяти, сервер применяет собственную внутреннюю хэш-функцию, которая основана на том же самом алгоритме, что и PASSWORD().

Правила синтаксиса для CREATE TABLE … PARTITION BY KEY подобен правилам для создания таблицы, которая разбита на разделы хэшем. Главные различия состоят в том что:


KEY используется вместо HASH.


KEY берет только список из одного или большего количества имен столбцов. Начиная с MySQL 5.1.5, если таблица имеет первичный ключ, столбцы, по которым происходит выделение разделов, должны включать хотя бы его часть (или весь ключ).

Начиная с MySQL 5.1.6, KEY берет список из нуля или большего количества имен столбца. Если никакое имя столбца не определено как ключ выделения разделов, используется первичный ключ таблицы, если он имеется. Например, следующая инструкция CREATE TABLE допустима в MySQL 5.1.6 или позже:


CREATE TABLE k1 (id INT NOT NULL PRIMARY KEY, name VARCHAR(20))

PARTITION BY KEY() PARTITIONS 2;


Если не имеется никакого первичногоключа, но имеется уникальный ключ, то именно уникальный ключ используется для выделения разделов:


CREATE TABLE k1 (id INT NOT NULL, name VARCHAR(20),

UNIQUE KEY (id))

PARTITION BY KEY() PARTITIONS 2;


Однако, если уникальный столбец ключа не был определен как NOT NULL, то предыдущая инструкция будет терпеть неудачу.

Перейти на страницу:

Похожие книги

C# 4.0: полное руководство
C# 4.0: полное руководство

В этом полном руководстве по C# 4.0 - языку программирования, разработанному специально для среды .NET, - детально рассмотрены все основные средства языка: типы данных, операторы, управляющие операторы, классы, интерфейсы, методы, делегаты, индексаторы, события, указатели, обобщения, коллекции, основные библиотеки классов, средства многопоточного программирования и директивы препроцессора. Подробно описаны новые возможности C#, в том числе PLINQ, библиотека TPL, динамический тип данных, а также именованные и необязательные аргументы. Это справочное пособие снабжено массой полезных советов авторитетного автора и сотнями примеров программ с комментариями, благодаря которым они становятся понятными любому читателю независимо от уровня его подготовки. Книга рассчитана на широкий круг читателей, интересующихся программированием на C#.Введите сюда краткую аннотацию

Герберт Шилдт

Программирование, программы, базы данных
C++ Primer Plus
C++ Primer Plus

C++ Primer Plus is a carefully crafted, complete tutorial on one of the most significant and widely used programming languages today. An accessible and easy-to-use self-study guide, this book is appropriate for both serious students of programming as well as developers already proficient in other languages.The sixth edition of C++ Primer Plus has been updated and expanded to cover the latest developments in C++, including a detailed look at the new C++11 standard.Author and educator Stephen Prata has created an introduction to C++ that is instructive, clear, and insightful. Fundamental programming concepts are explained along with details of the C++ language. Many short, practical examples illustrate just one or two concepts at a time, encouraging readers to master new topics by immediately putting them to use.Review questions and programming exercises at the end of each chapter help readers zero in on the most critical information and digest the most difficult concepts.In C++ Primer Plus, you'll find depth, breadth, and a variety of teaching techniques and tools to enhance your learning:• A new detailed chapter on the changes and additional capabilities introduced in the C++11 standard• Complete, integrated discussion of both basic C language and additional C++ features• Clear guidance about when and why to use a feature• Hands-on learning with concise and simple examples that develop your understanding a concept or two at a time• Hundreds of practical sample programs• Review questions and programming exercises at the end of each chapter to test your understanding• Coverage of generic C++ gives you the greatest possible flexibility• Teaches the ISO standard, including discussions of templates, the Standard Template Library, the string class, exceptions, RTTI, and namespaces

Стивен Прата

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных