Умирая, он произнес с горечью: «И человек родился, чтобы умереть». Его не стало 12 февраля 1856 года. За год до своей смерти он участвовал, насколько мог, в пятидесятилетнем юбилее Казанского университета и издал к этому времени французский перевод своего учения о геометрии, которое назвал пангеометрией: оно напечатано в сборнике, изданном по случаю пятидесятилетнего юбилея Казанского университета. Незадолго до смерти Лобачевский, с трудом надев полную форму, представлялся министру народного просвещения Норову. И это было последним усилием исполнить долг службы…
Тяжело становится следить шаг за шагом за разрушением замечательного человека и описывать испытываемые им страдания от сознания нашей общей беспомощности. Отвернемся же от всего личного, бренного и повторим вместе с Фихте: «Нет, не оставляй нас, священный палладиум человечества, утешительная мысль, что каждая из наших работ и каждое из наших страданий доставит человечеству новое совершенство и новое наслаждение, что мы для него работаем и не напрасно работаем…»
Посмотрим теперь, в чем заключаются заслуги Лобачевского перед потомством.
Глава VII
Происхождение воображаемой, или неевклидовой, геометрии ведет свое начало от постулата Евклида, с которым все мы встречаемся в курсе элементарной геометрии. При занятиях геометрией в детстве нас удивляет обыкновенно не сам постулат, принятый без доказательства, а заявление учителя, что все попытки доказать его до сих пор оставались безуспешными.
Во-первых, нам представляется очевидным, что перпендикуляр и наклонная при достаточном продолжении пересекутся, а во-вторых, это кажется так легко доказать. И трудно найти человека, который бы учился геометрии и никогда не пробовал доказать постулат Евклида. Этому, можно сказать, соблазну одинаково подвержены люди талантливые и бездарные, с той только разницей, что первые скоро убеждаются в несостоятельности своих доказательств, а последние упорствуют в своем мнении. Отсюда бесчисленное множество попыток доказать упомянутый постулат.
На этом постулате, как известно, построена теория параллельных линий, на основании которой доказывается теорема Фалеса о равенстве суммы углов треугольника двум прямым углам. Если бы можно было, не прибегая к теории параллельных, доказать, что сумма углов треугольника равна двум прямым, то из этой теоремы можно было бы вывести доказательства постулата Евклида, и в таком случае вся элементарная геометрия была бы наукой строго дедуктивной.
Из истории геометрии нам известно, что один персидский математик, живший в середине XIII века, первый обратил внимание на теорему Фалеса и старался доказать ее, не пользуясь теорией параллельных. В
Лежандр стремился доказать, что сумма углов треугольника не может быть ни более, ни менее двух прямых; из этого, конечно, следовало бы, что она должна быть равна двум прямым. В настоящее время доказательство Лежандра признано несостоятельным. Как бы то ни было, не достигнув главной своей цели, Лежандр многое сделал для изложения геометрии Евклида в смысле приспособления ее к требованиям нового времени, и элементарная геометрия в том виде, в каком проходят ее теперь, со всеми ее достоинствами и недостатками, принадлежит Лежандру.
Итальянец-иезуит Саккери в 1733 году в своих исследованиях приближался к идеям Лобачевского, то есть готов был отвергнуть постулат Евклида, но не решился этого высказать, а стремился во что бы то ни стало