Геномная революция, безусловно, открывает небывалые возможности в области здравоохранения, но этим ее значение далеко не исчерпывается. В геноме любой формы жизни закодированы инструкции, определяющие ее существование. В течение последних нескольких лет появились новые, более эффективные методы работы с генами, позволяющие воплотить в реальность то, что еще совсем недавно казалось чем-то из области научной фантастики. Во многом этим мы обязаны выдающемуся открытию Дженнифер Дудна и Эммануэль Шарпаньте — CRISPR [5], самому мощному инструменту геномной инженерии в современном мире. Разрабатывался он в качестве нового механизма для изменения ДНК. Благодаря ему мы получили возможность ближе познакомиться с функциями отдельных генов, активируя их или, наоборот, блокируя, а также разрезая ДНК в определенных местах таким образом, чтобы можно было изменить или дополнить последовательность. Это означает, что теоретически мы можем аккуратно удалить нежелательную версию гена, из-за которой образуются больные клетки, и заменить ее здоровой, работающей так, как надо. Но арсенал приемов в рамках данной технологии редактированием не ограничивается. В будущем она поможет нам выяснить, что делают те 98 % ДНК, которые не участвуют в кодировании белков. Таким образом, мы перейдем от алфавита генома к его грамматике и пунктуации. Здесь-то нам и пригодится возможность произвольно включать и выключать те или иные гены. В частности, мы начинаем использовать свет для контроля места и времени внесения изменений в ген, а также обеспечения обратимости вносимых изменений. Работа эта ведется в рамках еще одного динамично развивающегося направления под названием «оптогенетика». Суть ее заключается в том, чтобы научиться управлять деятельностью нервных клеток с помощью света в лабораторных условиях. Она поможет нам лучше понять, как работает мозг человека. Ожидается, что в течение следующих двух десятилетий результаты этих исследований позволят пролить свет на причины ряда заболеваний, включая дегенеративные заболевания нервной системы, эффективные методы лечения которых в настоящее время отсутствуют, таких, например, как болезнь Паркинсона, эпилепсия, болезнь Альцгеймера, инсульт и потеря слуха. Кроме того, сейчас ведется разработка так называемых CRISPR-таблеток — заключенных в съедобную оболочку ДНК-последовательностей, адаптированных таким образом, чтобы провоцировать самоуничтожение устойчивых к антибиотикам бактерий.
Мы уже видим результаты применения различных технологий, связанных с CRISPR, в нашей повседневной жизни — от серьезных (борьба с вымиранием пчелиных колоний) до курьезных (возможность выбрать цвет своего будущего питомца — собаки, карликовой свиньи или карпа кои). В следующие несколько десятилетий благодаря им могут быть созданы сложные синтетические биоцепочки, превращающие клетки в фабрики по производству биотоплива, а также выведены устойчивые к инфекциям породы домашнего скота. Более того, существуют планы по выведению «CRISPi-кур», в геном которых будут встроены инструменты для CRISPR-редактирования. Наконец, стоит упомянуть о так называемых фармацевтических средствах — например, трансгенных курах, в яйцах которых будет содержаться препарат для борьбы с проблемами, вызванными холестерином.
Еще одна возможная сфера применения геномных технологий — попытки воскресить вымершие виды животных. Уже началась работа по изменению генома эмбрионов слона с целью воссоздания мамонтоподобных шерстистых арктических слонов. Другой вид, который пытаются вернуть к жизни ученые, — странствующие голуби, истребленные нами в XIX в.