За несколько лет до того The Beatles изобрели семплирование в музыке. При работе над треком «Бенефис мистера Кайта!» («Being for the Benefit of Mr. Kite!») для альбома «Оркестр клуба одиноких сердец сержанта Пеппера» (Sgt Pepper's Lonely Hearts Club Band, 1967 г.) Джордж Мартин и Пол Маккартни использовали пленку с записью звуков циркового инструмента Викторианской эпохи под названием «каллиопа», разрезав ее на короткие полоски. По легенде, они бросали их в воздух, подбирали с пола первые попавшиеся и вставляли в запись. Язык нот для всех один, так что, добившись совпадения тона и ритма, музыканты смогли — впервые в истории — вставить в проигрыш между куплетами фрагменты, взятые из совершенно другой записи. С тех пор семплирование стало достаточно широко использоваться в популярной музыке, положив начало целым жанрам, прежде всего хип-хопу — самому прибыльному музыкальному жанру в истории.
В 1973 г. группа ученых из Стэнфорда под руководством Пола Берга сумела перенести ген из одного вируса в другой. Можно сказать, что с этого эксперимента по биологическому семплированию началась современная биология. Тогда были заложены основы биотехнологии, которая постепенно заняла ведущие позиции. Сегодня среди наук о жизни нет ни одной, которая бы не пользовалась этими методами. Работа по выявлению дефектных генов, приводящих к развитию заболеваний, а затем расшифровка всех наших генов в рамках проекта «Геном человека» были бы невозможны, если бы мы не умели выделять гены и переносить в бактерии, где их можно было бы комбинировать, описывать и изучать. В той области научных исследований, которой я занимаюсь, а именно — генетике развития, чтобы понять, что гены делают, они также выделяются из одного организма и встраиваются в другой, который лучше изучен или с которым проще работать. Мы брали гены человека и переносили их в бактерии, а потом, повозившись с кодом, внедряли в геном мышей. За два десятка лет с начала 1980-х гг. рекомбинация стала обычным инструментом в биологии.
С наступлением XXI в. младенческий период в развитии генетики, генной инженерии и молекулярной биологии закончился, сменившись детством. То время, прошедшее под знаком проекта по расшифровке генома человека, казалось сумасшедшим, насыщенным находками и открытиями. Наверное, такое ощущение появляется у всех, кто работает в научной области, переживающей революцию. Но сейчас, оглядываясь назад, я понимаю, что мы все работали слишком медленно и неэффективно — главным образом из-за того, что многие манипуляции, которые мы проделывали с ДНК и на которых были основаны наши эксперименты, приходилось изобретать каждый раз заново. Мы словно разрезали пленочные записи звуков каллиопы всякий раз, когда хотели использовать семплирование. Это был мир исключительно ручного рекомбинирования.
Так бывает со всеми новыми технологиями. Сначала их нужно изобрести. На этом этапе проводится множество экспериментов, а сам процесс разработки выглядит немного хаотичным. Затем они доводятся до ума и внедряются повсеместно, благодаря чему все получают к ним доступ. К новым технологиям быстро привыкают. Работать с ними становится легче. Они перестают быть чем-то необычным. Сегодня семплирование в музыке — простейшая операция, которую вы можете проделать даже на смартфоне. Я набираю эти слова с помощью технологии, которую невозможно было представить себе еще 50 лет назад, технологии, которую я едва понимаю, но которая практически всегда работает так, как ожидаешь, и основана на принципах электроники и определенных свойствах материалов. Ударяя по кнопкам, я заставляю электроны бежать по цепям через логические элементы и транзисторы в светоизлучающие диоды. Процесс этот настолько сложен, что я вряд ли смогу до конца понять, как это все на самом деле работает. Буму в электронике способствовала всеохватная торговля компонентами электронных схем. В результате они все больше и больше стандартизировались. Так что вам не нужно изобретать диод каждый раз, когда вы хотите его использовать. Достаточно просто купить его и соединить с другими компонентами. При этом вы прекрасно понимаете, что получите на выходе.
Компоненты становились все меньше, и создание все более сложных схем упрощалось. Сегодня полупроводниковая электроника используется практически во всех сферах жизни людей.
Все это хорошо известно тем, кто стоял у истоков синтетической биологии. Это были инженеры-электротехники и математики главным образом из Стэнфорда и Массачусетского технологического института в США, которые заметили, что по сути своей генетика — это закодированная цепь микросхем, которую можно собирать и разбирать, но сами генетики тратят полжизни на то, чтобы раз за разом заново изобретать эти микросхемы. Если бы компоненты, используемые в генной инженерии, удалось стандартизировать так же, как это произошло с компонентами электронных схем, это бы позволило многократно ускорить процесс внедрения наработок биологов в условиях промышленного производства.