Известна одна курьезная история (возможно, вымышленная) о том, как при рытье одного из первых тоннелей под Темзой руководство решило отметить проход до серединной отметки званым обедом непосредственно в тоннеле. Поскольку строительство еще не было завершено, в тоннель подавался сжатый воздух, и обедать приглашенным пришлось «под давлением». К их большому разочарованию, шампанское при открытии не выстрелило и не «играло», поскольку давление в бутылке оказалось таким же, как в тоннеле. И все же шампанское выпили. «Заиграло» выпитое шампанское уже потом, когда руководители с гостями вышли на поверхность…
Подниматься нужно медленно
Вскоре кессонные рабочие сами обнаружили, что повышенное, по сравнению с их рабочими условиями, атмосферное давление снимает неприятные симптомы. Это натолкнуло сэра Эрнеста Мойра на идею рекомпрессионной камеры для лечения кессонной болезни. Впервые подобную камеру применили около 1890 г. на строительстве Блэкуоллского тоннеля под Темзой и Ист-Риверского тоннеля в Нью-Йорке, где она отлично себя зарекомендовала. Однако пострадавшему рабочему приходилось провести в камере не один час, чтобы вылечиться. Ясно было, что усилия надо направить, в первую очередь, на профилактику и предотвращение болезни. Благодаря трудам Поля Бера решение оказалось очевидным: водолаз или кессонный рабочий должен подниматься (или проходить декомпрессию) достаточно медленно, чтобы легкие успели вывести растворенный в крови газ. Оставалось самое сложное – определить безопасную скорость подъема. К 1906 г. проблема приобрела такую остроту, что руководство Британского флота обратилось за помощью к профессору Джону Скотту Холдейну из Оксфордского университета, физиологу, уже известному своими исследованиями в области дыхания (см. гл. 1).
Совместно с лейтенантом Г. Дамантом и профессором А. Бойкоттом Холдейн провел в лондонском Институте Листера ряд экспериментов с большой стальной камерой, в которой можно было легко регулировать давление. В ходе экспериментов над козами выяснилось, что при резкой декомпрессии с 6 до примерно 2,6 атмосферы с животным ничего страшного не происходит. Однако если давление уменьшали на такую же величину, но с 4,4 до 1 атмосферы (т. е. до уровня моря), дело принимало иной оборот. Лишь 20 % животных удавалось в таком случае избежать кессонной болезни, принимавшей иногда самые тяжелые формы, вплоть до летального исхода. После ряда проб и ошибок исследователи убедились, что можно быстро сократить абсолютную разницу в давлении до половины, но потом нужно уменьшать перепад как можно медленнее. Таким образом была выявлена максимальная глубина погружения, не требующая декомпрессии, – 10 м (давление в 2 атмосферы). Как издавна принято у физиологов, исследователи затем провели испытание и на самих себе, к счастью, без последствий. Последние стадии эксперимента велись в море у острова Бьют, у западных берегов Шотландии, с корабля ВМФ «Спэнкер». Холдейн взял к морю всю семью и позволил своему 13-летнему сыну Джеку, который впоследствии тоже загорелся изучением дыхательных процессов, погрузиться на глубину 12 м{14}
.Холдейн сознавал, что скорость растворения азота в разных тканях различна. Жировые клетки, например, обладают большей накопительной емкостью, тогда как в клетках мозга азота откладывается меньше (это, в свою очередь, означает, что женщинам и полным людям требуется больше времени на декомпрессию, чем среднестатистическому мужчине). Кроме того, скорость накопления азота зависит от скорости поступления крови к тканям, поэтому в тканях с более низким кровоснабжением азот накапливается медленнее. Таким образом, для полного насыщения организма азотом требуется более пяти часов. При декомпрессии растворенный в жидкостях и тканях азот должен выводиться с кровотоком. Безопасная скорость его удаления зависит от накопительной емкости и скорости кровоснабжения различных тканей, то есть, проще говоря, чем дольше газ накапливается, тем дольше он выводится. Отсюда следует, что оптимальный для ныряльщика расклад – быстрое погружение, ограниченное время на глубине, затем медленный, поэтапный подъем на поверхность.