Читаем На кого упало яблоко полностью

Сторонники Эйнштейна выдвинули следующее обвинение. Они заявили, что ни в записках, присланных Гильбертом Эйнштейну, ни в его презентации, сделанной 20 ноября, не содержалось этих уравнений, а на самом деле он включил их в гранки своих работ позже, после знакомства с опубликованной работой Эйнштейна. И на это утверждение были основания. В 1997 году в библиотеке Геттингенского университета были обнаружены новые документы, а именно корректура статьи Гильберта, датированная 6 декабря. Из этой находки сделавший ее Л. Корри с соавторами сделали вывод, что Гильберт записал «правильные» уравнения поля не на пять дней раньше, а на четыре месяца позже Эйнштейна. Оказалось, что работа Гильберта, подготовленная к печати раньше эйнштейновской, в двух отношениях существенно отличается от своего печатного варианта. Окончательный вид она приняла только перед печатью, когда эйнштейновская работа уже увидела свет. В ходе завершающей правки Гильберт вставил в свою статью ссылки на параллельную декабрьскую работу Эйнштейна, добавил замечание о том, что уравнения поля можно представить и в ином виде (далее он выписал классическую формулу Эйнштейна, но без доказательства), и убрал все рассуждения о дополнительных условиях. Историки полагают, что эта правка во многом была проведена под влиянием эйнштейновской статьи. В возникшем споре за пальму первенства сторонники обеих партий упустили важную деталь — уравнение Гильберта в точности повторяет предыдущее уравнение Эйнштейна начала ноября. Эйнштейн был совершенно прав, отвечая Гильберту, что его уравнение совпадает с тем, что он представил в академию. Хотя вполне возможно, что под влиянием записок Гильберта Эйнштейн еще раз вернулся к уравнению поля и понял, что в нем необходимо изменить. Но к вопросу о приоритете это не имеет никакого отношения: Эйнштейн вывел конечное уравнение первым, а Гильберт его не вывел вообще — он так и застрял на предыдущем эйнштейновском варианте.

А что в итоге? Претензии, высказанные в публикациях Эйнштейна и Гильберта, испортили отношения между ними. Впрочем, через год Эйнштейн написал Гильберту письмо с предложением о примирении: «Между нами установилось какое-то враждебное настроение, причину которого я не хочу анализировать. Я боролся с чувством горечи и в этом добился полного успеха. Я теперь думаю о Вас с ничем не замутненным дружелюбием и прошу Вас попробовать то же в отношении меня. Объективно очень жаль что двое хороших парней, которые добились чего-то значительного в этом убогом мире, не вызвали радости друг в друге»[141].

Видимо, Гильберт принял это предложение дружбы и больше не выдвигал никаких претензий насчет приоритета. Гильберт охотно признавал и часто об этом говорил на лекциях, что великая идея принадлежит Эйнштейну. «Каждый мальчишка на улицах Геттингена понимает в четырехмерной геометрии больше, чем Эйнштейн, — однажды заметил он. — И тем не менее именно Эйнштейн, а не математики сделал эту работу»[142].

<p>Тайна гения физики</p>

Год 1932-й был решающим в развитии физики ядра и элементарных частиц. В 1930 году супруги Кюри обнаружили, что, если высокоэнергетичные альфа-частицы, испускаемые полонием-210, попадают на некоторые легкие элементы, в особенности на бериллий или литий, образуется излучение с необычно большой проникающей способностью. Сначала считалось, что это — гамма-излучение, но выяснилось, что оно обладает гораздо большей проникающей способностью, чем все известные гамма-лучи. В 1932 году английский физик Д. Чедвик (1891–1974) показал, что это новая, до сих пор неизвестная нейтральная частица с массой, приблизительно равной массе протона. Обнаруженная частица была названа нейтроном. Резерфорд сразу же оценил это открытие с точки зрения понимания строения ядра. А в 1934 году Ферми[143] открыл явление замедления нейтронов — последовательное уменьшение кинетической энергии нейтронов в результате соударений с атомными ядрами вещества. Именно нейтрон оказался ключом к ядерной реакции деления. Дальнейшее развитие ядерной физики пошло ускоренными темпами.

Сразу после открытия нейтрона Д. Иваненко (1904–1994) и В. Гейзенберг независимо выдвинули гипотезу, что атомное ядро состоит из нейтронов и протонов. С тех пор формулировку протон-нейтронной модели ядра связывают исключительно с именами этих ученых. Но для Ферми протон-нейтронная теория Иваненко и Гейзенберга всегда была и теорией Майораны[144]. Кем же был этот физик?

Этторе Майорана родился 5 августа 1906 года в Катании в известной в городе семье. Его отец, инженер, долгие годы возглавлял местную телефонную станцию, а после 1928 года был главным государственным инспектором связи. Кроме Этторе в семье было еще четверо детей — два брата и две сестры.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука