В первом послевоенном интервью Отто Ган сказал, что Мейтнер была у него младшим научным сотрудником, а впоследствии притворялся (или уже верил в это?), что вообще о ней не слышал. В течение многих лет стол, за которым Мейтнер работала в Берлине, вместе со всеми приборами, собранными ею для проведения ключевых экспериментов, был выставлен в Немецком музее Мюнхена. На прикрепленной к этому экспонату табличке значилось: «Arbeitstisch von Otto Hahn» («Рабочий стол Отто Гана»). Ган настолько разочаровал Фрица Штрассмана, что тот отказался от 10 процентов Нобелевской премии, которые Ган предложил ему[159]. Лиза Мейтнер была тяжко оскорблена тем, как поступил с ней ее многолетний сотрудник Ган; впрочем, она объясняла его поступок тем, что он пытается вычеркнуть из памяти недавнее прошлое Германии.
А что с Идой Ноддак? Она попыталась присвоить себе честь открытия деления ядер урана. Но ученые с этим не согласились. Пионерская идея Ноддак, высказанная во время критики экспериментов Ферми, оказалась забыта и не отражена ни в одном из физических справочников.
Властелины кольца
На заре физики атомного ядра большинство основополагающих открытий было сделано с использованием природных источников радиоактивного излучения с энергией всего лишь несколько МэВ и простейших детектирующих устройств. Со временем экспериментальные установки становились все сложней. Развивалась техника ускорения и детектирования частиц. Успехи в физике ядра и элементарных частиц все в большей степени определялись прогрессом в этих областях. Наступила эра ускорителей заряженных частиц.
В 1929 году молодой профессор Калифорнийского университета Эрнест Орландо Лоуренс понял, что осуществить резонансное ускорение частиц возможно не только на прямолинейной траектории. Он взял металлический полый цилиндр примерно тех же пропорций, что и банка из-под шпрот, разрезал его вдоль оси и раздвинул половинки (их сейчас называют дуантами). Эту разрезанную банку надо вложить между полюсами электромагнита, а в ее центре поместить источник не особенно быстрых заряженных частиц, подчиняющихся законам ньютоновской механики. В постоянном магнитном поле они станут закручиваться и двигаться по окружностям фиксированного радиуса (разумеется, в камере должен быть вакуум).
Такое устройство можно превратить в ускоритель. Для этого в зазоры между дуантами надо подать переменное электрическое поле, частота которого совпадает с частотой вращения частиц (последняя зависит от заряда, напряженности магнитного поля и массы частиц и не зависит от их скорости). Сам Лоуренс поначалу называл свое изобретение протонной каруселью, но вскоре оно стало именоваться циклотроном.
Открытие Лоуренса оказало сильнейшее влияние на дальнейшее развитие ядерной физики. Небольшое деревянное здание, в котором производились его первые эксперименты, дало начало грандиозной радиационной лаборатории в Беркли, раскинувшейся на берегу моря на живописных холмах Сан-Франциско. Но на пути ускорения частиц в циклотроне лежит принципиальная трудность. По мере ускорения частицы в соответствии со специальной теорией относительности растет ее масса. Это приводит к нарушению процесса — через определенное число оборотов магнитное поле вместо ускорения начинает тормозить частицы, траектория их изменяется, и ускоряемая частица может просто «врезаться» в стенку. Чтобы релятивистские частицы продолжали разгоняться в резонансном режиме, нужно либо постепенно увеличивать напряженность магнитного поля (тем самым уменьшая радиус их траектории), либо уменьшать частоту колебаний электрического потенциала на дуантах, заставляя ее следовать за снижением частоты обращения частиц, либо согласованно менять параметры обоих полей.
Вся история ускорителей почти до самого последнего времени — это изобретение способов синхронизации движения частиц в такт с переменным электрическим полем. В феврале 1944 года В. И. Векслер[160] выдвинул революционную идею, как преодолеть энергетический барьер циклотрона. Она была настолько проста, что казалось странным, почему к ней не пришли раньше. Идея состояла в том, что при резонансном ускорении частоты обращения частиц и ускоряющего поля должны постоянно совпадать, иными словами, быть синхронными. При ускорении тяжелых релятивистских частиц в циклотроне для синхронизации предлагалось изменять частоту ускоряющего электрического поля по определенному закону (в дальнейшем такой ускоритель получил название синхроциклотрона). Сам принцип ускорения был назван «принципом автофазировки».