В каждой звезде идет непрерывная борьба двух сил. Гравитация сжимает звезду, а давление – разжимает. Большую часть жизни звезды эти силы уравновешивают друг друга, не позволяя звезде сжаться в точку или рассеяться в космосе[183]
. Но некоторые звезды доживают до момента, когда давление катастрофически снижается, не выдерживая натиска гравитации, и после этого схлопываются с релятивистской скоростью[184]. Их плотность мгновенно повышается до невероятных значений, что приводит к новой волне огромного давления, под действием которого звезда взрывается и становится так называемой сверхновой. На краткий миг эта единственная звезда сияет ярче всей своей галактики. За считаные секунды она испускает столько же энергии, сколько наше Солнце испустит за все десять миллиардов лет своего существования.О сверхновых впервые заговорили древнекитайские астрономы, когда в 185 году н. э. на небе над ними неожиданно появилась новая яркая звезда. Но ученые начали постигать их лишь в 1930-х годах и только в 1950-х поняли, что сверхновая, находящаяся неподалеку от Земли, может представлять угрозу планете[185]
.В 1969 году ученые открыли новый и нетривиальный тип звездной вспышки. В разгар холодной войны США запустили несколько спутников-шпионов, чтобы следить за секретными ядерными испытаниями, которые можно было обнаружить по характерной вспышке гамма-излучения. Спутники стали засекать короткие гамма-всплески, которые сильно отличались от вспышек, возникающих при испытаниях ядерного оружия. Астрономы определили, что идти от Земли – и даже из Млечного Пути – они не могут, а потому, должно быть, происходят из чрезвычайно далеких галактик, находящихся в миллиардах световых лет от нас[186]
. Загадка этих гамма-всплесков не решена и сегодня. Главенствующая теория гласит, что более длинные всплески связаны со сверхновыми редкого типа, а более короткие – со столкновениями нейтронных звезд. Количество энергии, которая высвобождается при каждом всплеске, сравнимо с тем, что высвобождается при взрыве сверхновой, но сосредоточено в двух узких конусах, направленных в противоположные стороны, что и позволяет засекать эти вспышки на огромных расстояниях[187]. Так, в марте 2008 года Земли достиг свет от гамма-всплеска в галактике, находящейся в 10 млрд световых лет от нас, и этот свет был по-прежнему достаточно ярок, чтобы заметить его невооруженным глазом[188].Взрыв сверхновой или гамма-всплеск неподалеку от Солнечной системы мог бы привести к катастрофическим последствиям. Хотя сами гамма-лучи и космические лучи в таком случае не достигнут поверхности Земли, угрозу могут представлять реакции, которые они запускают в земной атмосфере. Наиболее важна, пожалуй, выработка оксидов азота, которые изменят климат на Земле и нанесут серьезный урон озоновому слою. Последний эффект считается самым смертоносным, поскольку на некоторое количество лет мы станем гораздо сильнее подвержены ультрафиолетовому излучению[189]
.Астрономы оценили вероятность того, что такие события произойдут достаточно близко к Земле, чтобы вызвать глобальную катастрофу, определяемую глобальным истощением озонового слоя на 30 % и более. (Подозреваю, это будет представлять меньшую угрозу для цивилизации, чем соответствующие пороги для астероидов, комет и мегаизвержений.) В среднем вероятность таких событий в столетии составляет примерно 1 к 5 млн для взрывов сверхновых и 1 к 2,5 млн для гамма-всплесков. Как и в случае с астероидами, мы можем получить более точную оценку для следующих 100 лет, исследуя небо в поиске надвигающихся угроз. С гамма-всплесками ситуация обстоит сложнее, поскольку они хуже изучены и могут наносить удар из гораздо более далеких областей. Пока не найдено ни одной потенциальной опасности любого из этих типов, тем не менее вероятность их возникновения не исключена полностью, в связи с чем риск таких событий в следующее столетие оказывается несколько ниже среднего[190]
.Таблица 3.3. Вековая вероятность звездной вспышки, которая вызовет на Земле катастрофу, в результате чего озоновый слой истощится более чем на 30 %[191]
.