Итак, для увеличения дальности РЛС необходимо расширение длительности излучаемых импульсов, а для повышения точности и разрешающей способности по дальности – уменьшение этой длительности. Налицо техническое противоречие. Как разрешить это противоречие? Предложение состояло в том, чтобы увеличить ширину спектра импульсного сигнала по сравнению с простой импульсной последовательностью. Сделать это можно путём частотной или фазовой модуляции, а также путём фазовой или частотной манипуляции, причём в пределах самих импульсов. В результате таких действий произведение ширины спектра и длительности импульса
Однако не всякое расширение спектра приводит к желаемой цели. Необходима такая модуляция зондирующих импульсов и такая обработка принимаемых сигналов, чтобы на выходе образовались импульсы с длительностью τ0
, при которых отношениеДругой тип сложного сигнала СВЧ-импульсы с фазовой манипуляцией, состоящие из набора высокочастотных составляющих с длительностью τ <<
Теперь обратимся к частотному методу определения дальности до цели. Если изучаемый сигнал представляет собой непрерывное колебание, а его частота меняется периодически по линейному закону (пилообразный закон ЧМ), то частота принимаемого от неподвижной цели сигнала изменяется по тому же закону, но с запаздыванием, пропорциональным дальности до цели. Отсюда следует, что, измеряя разность частот принимаемого и сильно ослабленного излучаемого сигнала, то есть, определяя частоту биений, можем получить на линейном участке ЧМ величину, пропорциональную дальности до цели. При движении цели возникает ошибка в определении дальности, вызванная появлением доплеровского эффекта. Эти ошибки возрастают на малых дальностях, а именно на этих малых дальностях наиболее выпукло проявляются преимущества частотного метода определения дальности над импульсным. Мы видим, что возникает техническое противоречие между необходимостью определения радиальных параметров движущейся цели (дальность, радиальная скорость) и точностью их измерения. Один из путей преодоления этого противоречия состоит в применении вместо пилообразной ЧМ симметричного треугольного закона изменения частоты излучаемого сигнала. Тогда, измеряя биения частот на одном и другом полупериодах изменения модулирующей частоты, мы получим частоту для определения дальности до цели в виде полусуммы парциальных частот биений, а для вычисления радиальной скорости цели используется полуразность указанных частот биений.
Наконец, рассмотрим ещё один вид противоречий, возникших на заре радиолокации, примерно 80 лет назад. Первые опыты по локации самолётов проводились в 1934 г. Б. К. Шембелем под руководством директора ЛЭФИ академика А. А. Чернышева. Была разработана радиоаппаратура под условным названием «Рапид», работавшая на волне 4,7 м при мощности 200 вт (непрерывное излучение). Излучающая часть была смонтирована на крыше здания ЛЭФИ и ориентировалась в направлении на приёмник, который перемещался в пределах 11–50 км от излучателя. Самолёт следовал по разным маршрутам, но пересекал трассу электромагнитного излучения. Определялась максимальная дальность от приёмника до самолёта. Нас в этой истории интересует наличие пространственного разноса передатчика и приёмника. Зачем он нужен?