Пусть шары А и В подвешены на равных и параллельных нитях AC, BD из точек С и D. Опишем из этих точек, как из центров, радиусами ВD и АС полуокружности EAF и GBH. Отклонив тело А до точки R дуги EAF и убрав тело B, пускаем А качаться и замечаем ту точку V, до которой оно дойдет после одного полного размаха; тогда RV представляет уменьшение величины размаха от сопротивления воздуха. Пусть ST есть четвертая часть RV, так расположенная по средине этой дуги, чтобы RS и TV были между собою равны, т. е. чтобы было RS = TV = 3/2 ST, тогда ST представит весьма близко влияние сопротивления воздуха при размахе от S до А. Поместим тело В на его место; если тело А пустить из точки S, то можно без чувствительной погрешности принять, что его скорость при ударе в низшем его положении будет такая же, как если бы оно свободно падало в пустоте из точки T. Эту скорость можно представить хордой ТА, ибо известно, что скорость маятника в низшей точке его дуги пропорциональна хорде дуги его падения. Пусть после отражения тело А достигает до точки S и тело В – до точки k. Убрав тело В, определяем положение такой точки v, из которой если пустить тело А, то после полного размаха оно приходит в r; если тогда взять st = 1/4 и поместить точки s и t так, чтобы было rs = tv, то хорда tA представит ту скорость, которую имеет тело А после отражения, ибо t будет то истинное и исправленное место, до которого могло бы дойти тело А при отсутствии сопротивления воздуха.
Даже с помощью Ньютоновой теории гравитации мы можем понять, что происходит, когда звезда схлопывается под воз-действием собственного гравитационного поля.
В стандартной ситуации сила, которую создает термоядерное горение, и гравитационные силы в звезде уравновешены. С поверхности звезды излучается свет.
Когда силы, создаваемой термоядерным горением, уже недостаточно, гравитация звезды начинает сильнее воздействовать на испускаемый свет.
В конце концов гравитационное поле схлопнувшейся звезды становит-ся таким мощным, что свет уже не может вырваться из него, и возникает так называемая черная дыра.
Все это следует из первоначальных теорий Ньютона, хотя в полной мере было описано лишь спустя много лет после его смерти.
Подобным же образом исправляется и место k и находится та точка l, до которой дошло бы тело В в пустоте. Производя все испытания таким способом, мы как бы производим их в пустоте. Умножив затем массу тела А (если можно так выразиться) на хорду ТА, представляющую его скорость, получим его количество движения в точке А перед самым моментом удара. Затем, умножив на tA, получим его количество движения после отражения. Точно так же надо массу тела В умножить на хорду Вt, чтобы получить его количество движения после отражения. Подобным образом находятся количества движения каждого из двух тел как перед ударом, так и после отражения, и в том случае, когда они одновременно пускаются из разных мест, после чего и можно сравнивать количества движения между собою и выводить последствия удара и отражения.
Телескоп и компас. Германия, XVIII век.