Читаем На пути к бионике полностью

Теперь заглянем в область энергетики. Не сможем ли мы и там воспользоваться помощью микроорганизмов? Иному читателю, живущему в век атомных электростанций, знающему о существовании ядерных или атомных батарей, такая идея может показаться нелепой, надуманной и даже смехотворной. Однако такое представление так же ошибочно, как и мнение о бесполезности изучения живых локаторов на фоне существующей, хорошо развитой современной радиолокации, гидролокации. Возьмем к примеру упомянутые ядерные или атомные батареи. В этих батареях энергия радиоактивного распада непосредственно превращается в электричество. Безусловно, это удобно, но подобная батарея имеет ряд серьезных недостатков. Основной из них - сверхвысокое напряжение: оно достигает сотен тысяч вольт, и потому приходится вводить дополнительные устройства для его понижения. Энергетика же живых микроорганизмов удивительно гармонично сочетает оптимальные режимы, предельную экономичность и надежность. Но это вовсе не означает, что принципы, на которых она построена, применимы лишь в живых организмах. Мы должны их использовать для создания новой энергетики путем перенесения этих принципов в неживую природу, в инженерные энергетические системы. При этом вовсе не надо стремиться точно копировать отдельные элементы живого организма. Для создания новых энергетических систем достаточно воспользоваться лишь принципами, отработанными в процессе эволюции природой. Это чисто бионический путь. Но есть и другой путь - путь непосредственного использования энергии, образуемой в процессе жизнедеятельности микроорганизмов, путь создания биохимических источников питания.

Идея создания биохимических источников питания вообще-то не нова. У нее довольно длинная и трудная история. На протяжении последних ста лет она не раз возникала, затем о ней забывали и неоднократно опять вспоминали. Так, например, в журнале "Природа и люди", № 20 за 1899 года, была опубликована заметка следующего содержания:

"Во многих заграничных журналах помещено описание прибора, предложенного русским инженером Н. Мельниковым и приводимого в движение бактериями. Так как ныне существуют машины паровые, керосиновые и т. п., можно сказать; существуют "машины бактерийные". Н. Мельников берет резервуар и затем крахмалистую жидкость (самые дешевые отбросы крахмального производства или мучную грязную пыль и т. п.), прибавляет к ней азотнокислые и фосфорные соли и желатину (в виде столярного клея) и производит при помощи грибков и специальных бактерий сильное и бурное спиртовое и гнилостное брожение - продукты брожения двигают маленькую машину. При соответственных размерах резервуара и машины достигнуто движение машины в продолжение двадцати часов безостановочно. В настоящее время в лаборатории инженера Н. Мельникова производятся опыты утилизации продуктов жизни бактерий для движения машин. В ближайшем будущем эти опыты указывают, например, на возможность в винокуренных заводах утилизировать процессы брожения для работы насосов, подъема воды, дробления солода и других работ"*

* (Цит. по журналу "Техника молодежи", 1971, № 6, стр. 61.)

Прошло шестьдесят лет. Бурное развитие микроэлектроники и космической техники заставило ученых ряда стран вновь заняться разработкой новых биохимических источников энергии. Уже строятся дешевые, экономичные, малогабаритные биохимические элементы.

Не так давно в США был сконструирован радиопередатчик, работающий от бактериального источника электрического тока. Дальность действия передатчика 24 километра. Электроэнергию для него вырабатывают бактерии, питающиеся сахаром, растворенным в морской воде. "Живые электрические батареи" можно использовать для экономичных систем космических кораблей: для снабжения водородом и кислородом, питьевой водой, воздухом и т. д. При желании или необходимости "живую электрическую батарейку" можно заряжать... соком кокосового ореха. Оказывается, микроорганизмы, живущие в соке кокосового ореха, могут вырабатывать электрическую энергию. Один орех способен "прокормить" батарейку в течение 50 часов. Такая батарейка вполне подходит для работы в транзисторном приемнике.

Перейти на страницу:

Все книги серии Мир знаний

Похожие книги

Павлов И.П. Полное собрание сочинений. Том 1.
Павлов И.П. Полное собрание сочинений. Том 1.

Первое издание полного собрания сочинений И. П. Павлова, предпринятое печатанием по постановлению Совета Народных Комиссаров Союза ССР от 28 февраля 1936 г., было закончено к 100-летию со дня рождения И. П. Павлова - в 1949 г.Второе издание полного собрания сочинений И. П. Павлова, печатающиеся по постановлению Совета Министров СССР от 8 июня 1949 г., в основном содержит, как и первое, труды, опубликованные при жизни автора. Дополнительно в настоящем издание включен ряд работ по кровообращению и условным рефлексам, а также «Лекции по физиологии», не вошедшие в первое издание. Кроме того, внесены некоторые изменения в расположение материала в целях сгруппирования его по определенным проблемам с сохранением в них хронологической последовательности.Второе издание полного собрания сочинений И. П. Павлова выходит в 6 томах (8 книгах). Библиографический, именной и предметно-тематический указатели ко всему изданию. а также очерк жизни и деятельности И. Павлова составят отдельный дополнительный том.

Иван Петрович Павлов

Биология, биофизика, биохимия
Логика случая. О природе и происхождении биологической эволюции
Логика случая. О природе и происхождении биологической эволюции

В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эво люции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход – вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.

Евгений Викторович Кунин

Биология, биофизика, биохимия