Испытуемый П.: «Поезд отходит от станции с ускорением 0,2 м/с2
и через 10 с продолжает двигаться равномерно – ага, конечную скорость знаем, – с достигнутой скоростью, – ну вот, знаем, с какой, – в течение одной минуты. Ну, тут путь можно найти, да и там тоже. – Определить путь, пройденный телом за это время. – Ну, вот и им нужен путь. Можно не решать?»Необходимо сразу же оговориться, что такой способ решения встречается только в задачах, достаточно абстрагированных. Здесь не требовался особый анализ явления, было сказано, где какое движение, какими величинами оно характеризуется. Трудность таких школьных задач состоит более всего в их запутанности, логической сложности. Тем не менее и более сложные задачи сильными испытуемыми решались таким же образом. Здесь налицо отработанные, уже свернутые мыслительные операции, включающие осмышление, сопоставление, «узнавание». Иногда даже длинная задача представляется настолько прозрачной, что испытуемый, дав самый общий анализ, не испытывает желания продолжать решение. Он еще не выбрал нужные формулы, он еще не построил логическую цепь, но он знает, из какого круга и как будет выбирать эти формулы, как будет строить логику рассуждений, поэтому ничего нового это решение ему не принесет. Отсюда и потеря интереса к продолжению решения. Так, вероятно, и формируется «чувство знакомого», помогающее решать сложные и незнакомые задачи.
Отсюда становится ясным, что знание «типичных случаев» необходимо, составляет определенную часть решения новой задачи. При этом сформировавшийся тип является как бы опорным эталоном, к которому стремится свести решение испытуемый. С другой стороны, очевидно, что собственно продуктивная деятельность состоит здесь в умении преобразовать условия задачи, увидеть, выделить наиболее важные физические явления в сложном процессе, в способности представить себе это явление.
Если решение затруднено или неверно, то это объясняется ошибками в одном из видов описанной деятельности. Чаще всего бедность воображения, неспособность увидеть известную физическую закономерность в новом явлении. Бывают случаи, когда для решающего условие задачи остается словами, за ними не вырастает никакого образа, явления или процесса. Тогда решающий «абстрагирует» только абстрагированное: то, что уже названо привычным именем «скорость», «сила», «ускорение» и т. д. Именно здесь поиски решения сводятся к попыткам скомбинировать из этих данных формулу, к простому манипулированию формулами.
Менее безнадежен случай ошибочного решения, когда неверно выделена существенная зависимость или «узнавание» было на основе второстепенных, несущественных признаков. В этих случаях решение чаще всего не прекращается, следует проверка. И если проверка обнаруживает ошибку, то решающий возвращается к условию, начинает новые поиски.
Более простым вариантом описанного случая является «узнавание» знакомой формулы в новом явлении. Здесь так же, как раньше, условие сопоставляется с формулой, «притирается» к ней, истолковывается с позиции этой формулы. Затем идет абстрагирование условий на основе выработанного понимания явления и решение.
Более сложная незнакомая задача требует применения еще одного механизма, также связанного с работой воображения. Попытка представить явление в сумме с условиями задачи дает слишком мало материала для решения. Тогда решающий начинает рассуждать, домысливать явление, положенное в основу задачи. Здесь для правильного решения необходимо развитое физическое мышление, четко сформированные понятия, ясное и детальное представление явлений и процессов, имеющих отношение к задаче. Такие рассуждения как бы добавляют к задаче новые данные.