Так протон как бы «подталкивается» при каждом проходе через зазор и движется со все возрастающей скоростью по дугам окружностей все большего радиуса (с ростом скорости растет его масса движения) пока не достигнет наружной стенки диска. Тогда протон вылетает из циклотрона на выбранную мишень. Дуанты изготовляются из немагнитного материала, в камере должен быть глубокий вакуум, чем больше размер дуантов и чем крупнее и мощнее магниты, тем выше будет энергия разгоняемых частиц.
Создание циклотрона открыло перед физиками обширное новое поле исследований. Бомбардировка атомов многих элементов позволила расщепить их ядра на фрагменты, которые оказались изотопами, часто радиоактивными. Циклотрон использовался и для измерения энергий связи многих ядер, и (путем сравнения величин разности масс до и после ядерной реакции) для проверки соотношения Эйнштейна между массой и энергией.
На основе циклотрона Лоуренс построил еще и масс-спектрометр, прибор для разделения изотопов: так как массы изотопов несколько отличаются, изотопы движутся по близким, хотя и не совпадающим траекториям, поэтому могут быть разделены. Хотя этот способ их разделения не слишком эффективен, именно им был получен уран-235 для первых атомных бомб. После войны Лоуренс продолжал строительство ускорителей, способных разгонять частицы до энергий в миллиарды электронвольт. На одном из таких ускорителей, получившем название бэватрона — от БэВ, старого названия миллиарда эВ, ныне ГэВ — группа Эмилио Сегре открыла антипротон, а вскоре и антинейтрон.
Циклотрон был значительно усовершенствован введением методов автофазировки Владимира Иосифовича Векслера (1907–1966) и Эдвина М. Мак-Миллана (р. 1907, Нобелевская премия по химии за открытие трансурановых элементов 1951 г.) и др.
Дальнейшее развитие ускорительной техники привело к созданию коллайдеров (от английского «коллайд» — сталкиваться) — это ускорители, в которых два пучка частиц направляются друг на друга. При этом, во-первых, энергии частиц обоих встречных пучков складываются, а во-вторых, не мешают посторонние частицы, всегда имеющиеся в составе мишени.
Первый такой аппарат для исследования взаимодействий электронов с электронами был запущен в Новосибирске в 1967 г. Самый большой линейный ускоритель электронов находится в Пало-Альто (США) и называется SLAC (сокращенно от «Стенфордский линейный ускоритель»), а его модификация — SLC. В нем ускоряют электроны и позитроны до энергий в 50 ГэВ, а затем сталкивают их друг с другом по схеме коллайдера, в SLC после его отладки были достигнуты еще большие энергии.
Один из самых больших к настоящему времени коллайдеров с 1982 г. работает в Женеве в Европейском центре ядерных исследований (ЦЕРН). Называется он LEP и в нем исследуются столкновения протонов и антипротонов, совершающих 50 000 оборотов в секунду по кольцу с длиной окружности более 20 км.
Наиболее ярким событием, с которого началась работа этой машины, было открытие так называемых промежуточных мезонов, о них будем говорить ниже. Сейчас только заметим, что, поскольку массы этих
Идея такого эксперимента была разработана физиком Карло Руббиа (р. 1934) и другими, а основной вклад в перестройку ускорителя внес Симон ван дер Мер (р. 1925), они и разделили Нобелевскую премию 1984 г. Ван дер Мер изобрел устройства, которые позволяли — при таких скоростях! — впрыскивать в уже существующие и вращающиеся сгустки частиц и античастиц добавочные частицы и уравнивать «на лету» их параметры.
Самый большой ускоритель диаметром 83,6 км, называемый SSC (сверхпроводящий суперколлайдер), должен разгонять протоны и антипротоны до энергии в 20 ТэВ (двадцать триллионов эВ). Стоимость его, утвержденная еще в 1983 г., должна была составить 6 млрд долларов, а строительство должно было закончиться к 1995 г., но затем его финансирование было прекращено[51]
. О Большом адроном коллайдере мы уже говорили.Раздел IV
За гранью наблюдаемого: квазичастицы, темная материя и черные дыры
Глава 1
Квантовые поля
В. Высоцкий