Теория эта страдала явными недостатками. Во-первых, частица, имеющая электрический заряд, не может не иметь массу — она ведь может виртуально испускать-поглощать фотоны, а следовательно, должна обладать какой-то инерцией. Во-вторых, радиус электромагнитных взаимодействий бесконечен, и связано это с тем, что масса фотона равна нулю. А вот у слабых взаимодействий радиус действия очень мал, поэтому масса промежуточных мезонов должна быть очень велика — тогда, согласно принципу неопределенностей, они возникают лишь на короткое время, и в следующем варианте теории Глэшоу постулировал большие массы бозонов и
Множество исследований в этом направлении оставалось безрезультатным, пока в 1967 г. к этой работе не подключился Стивен Вайнберг[58]
, одноклассник и друг Глэшоу (они оба ученики Швингера), сумевший преодолеть громадные математические трудности. Прямое постулирование массы частиц невозможно — в такой теории не удается избежать бесконечностей вроде тех, что были ранее преодолены в КЭД. И Вайнберг предлагает использовать в этой теории механизм спонтанного нарушения симметрии: так называемый механизм Хиггса (о нем чуть ниже).Решение, которое построил Вейнберг, показывает, через механизм Хиггса, что фотон по-прежнему остается безмассовым, а остальные три частицы приобретают массу. (Такую же теорию независимо от них и с аналогичной процедурой перенормировки построил гораздо более опытный А. Салам.) В этой теории электромагнитные и слабые взаимодействия уравниваются по силе при крайне высоких энергиях. Однако, массы
Важнейшее отличие этой теории от всех предшествующих состояло в том, что один из трех промежуточных бозонов должен быть нейтральным, т. е. в ней есть, помимо заряженных, и слабые нейтральные токи. Поэтому возможно, например, за счет этих токов рассеяние нейтрино на электроне без изменения типа частиц.
Узнав об этой теории, группа из 80 физиков ЦЕРНа старательно пересмотрела архив фотографий, полученных на большой пузырьковой камере «Гаргамель» при облучении потоком мюонов. Проделав титаническую работу пересмотра и обработки примерно 1,4 млн изображений, они нашли три случая рассеяния мюонных нейтрино на электронах — эти электроны как бы получали сильный, ничем иным не вызванный толчок и оставляли свой след на снимке. Это количество соответствовало числу случаев, ожидаемых на основе электрослабой теории.
Три снимка доказали справедливость долгожданной электрослабой теории, объединившей два типа взаимодействий, и за ее построение Шелдон Л. Глэшоу (р. 1932), Стивен Вейнберг (р. 1933) и Абдус Салам (1926–1996) были удостоены Нобелевской премии по физике 1979 г. Их достижение сравнивали с успехом Максвелла, объединившего электромагнетизм и оптику.
А в 1983 г. группа Карло Руббиа обнаружила в экспериментах с коллайдером на аппаратуре, задуманной и созданной Симоном дер Ме-ром (мы писали о ней в главе об аппаратуре), все промежуточные мезоны:
Однако сложности с пониманием природы электрослабого взаимодействия на этом не кончились: Глэшоу, Вейнберг и Салам не смогли довести теорию до той ясности, которая была достигнута в КЭД. В частности, они не сумели провести полностью перенормировку массы, т. е. в их расчетах возникали какие-то неопределенности, на которые приходилось закрывать глаза. А это могло означать, что они не полностью учитывали возможные взаимодействия или неправильно их трактовали.
Для преодоления этих трудностей потребовалось еще очень много усилий: нужно было придумать какие-то специфические приемы расчетов. Так, оказалось, что в этих взаимодействиях нужно учитывать еще и модель кварков: только на этом пути удалось точно вычислить массы и времена жизни промежуточных бозонов и шестого кварка (у него, как мы выше писали, оказалось совсем уж неожиданно большая масса). Эту работу смогли выполнить Мартинус Й. Г. Вельтман (р. 1931) и его ученик Герард т-Хоофт (р. 1946), удостоенные «за прояснение квантовой структуры электрослабых взаимодействий» Нобелевской премии 1999 г.