Читаем Наблюдения и озарения или Как физики выявляют законы природы полностью

По расчетам из каждых 10 миллиардов нейтрино, проходящих через Землю, только одна частица вступает во взаимодействие со своим окружением. Поэтому их эксперимент проводился таким образом. Мощный поток протонов из ускорителя направлялся на мишень из бериллия, так что поток образовавшихся на ней частиц включал в себя множество пионов. Их распад на лету порождал мюоны и мюонные нейтрино, и продукты распада направлялись на стальной барьер толщиной в 13,4 м, который заведомо должен был поглотить все частицы кроме нейтрино. Затем этот поток нейтрино вводился в большой алюминиевый детектор, в котором несколько нейтрино могли, наконец, провзаимодействовать с атомами алюминия. Анализируя эти взаимодействия, физики и обнаружили мюонные нейтрино и смогли определить некоторые их параметры (Нобелевская премия 1988 г.).

Таким образом, семейство слабо взаимодействующих частиц включало в себя пары (+, -), (е+, е-), (,), (е,е) — их всех назвали лептонами (от греческого и еврейского — мелкая монета, мелочь, ср. русскую идиому «внести свою лепту»). Название это прижилось, хотя оказалось не очень удачным.

В 1975 г. Мартин Перл (р. 1929, Нобелевская премия 1995 г.) открыл — при изучении на коллайдере столкновений высокоэнергичных пучков электронов и позитронов — еще один лептон, названный тритоном (от греческого — третий) или -лептоном. Как будто в насмешку над родовым именем «лептон», масса его оказалась примерно вдвое больше массы протона или нейтрона, но свойства были того же типа, как у электронов или мюонов: его рождение или распад всегда связаны с появлением специфического, только ему сопутствующего тау-нейтрино. Если среднее время жизни мюона — порядка двух миллионных секунды, то тау-лептон распадается в миллиард раз быстрее, но зато, так как у него большая масса, он может распадаться многими разными путями.

Неизвестно также, могут ли существовать и другие типы лептонов. Дело в том, что еще одно двухкомпонентное уравнение предлагал в 1937 г. Этторе Майорана (1906–1938, гениальный, по-видимому, физик, сотрудник Ферми, причины исчезновения которого остаются неизвестными). В его теории частицы и античастицы должны быть тождественными — эти майорановские лептоны тоже ищут, но пока безрезультатно. (Опять физики берут на вооружение старый принцип демократии: все, что не запрещено, — разрешено, а запретов на существование таких частиц тоже нет.)

А вот есть ли у этих нейтрино, мюоного и тау-лептонного, масса или нет — вопрос до сих пор нерешенный: из измерений следует пока только, что у масса не может превышать одной десятой массы электрона, а у она не больше, чем масса сорока электронов. Лептоны подразделяются, очевидно, на три семейства: электронное (е, е), мюонное (, ) и тау (, ) — и для каждого из них есть свой закон сохранения, есть, иными словами, три вида лептонных «зарядов» (впервые, по-видимому, понятие лептонного заряда ввел Я. Б. Зельдович еще в 1952 г.). А вот являются эти законы сохранения абсолютными, или возможны переходы одного типа нейтрино в другой — это точно не известно, хотя астрономические данные говорят, как будто, в пользу возможности таких переходов.

4. Структура нуклонов: «шуба» частиц

Можно ли говорить о том, как устроены внутри элементарные частицы? Это, казалось бы, бессмысленно, потому что, если у них есть внутренняя структура, то их можно будет разбить на более простые части.

Но с другой стороны, представлять их точечными образованиями тоже не удается. И фактически, первый пример тому дало изучение свойств нейтрона. У нейтрона нет электрического заряда, но есть, однако, магнитный момент, а он, мы знаем, эквивалентен наличию электрического тока. Отсюда следует, что нейтрон должен какое-то время пребывать в виде двух заряженных частиц, вращающихся вокруг общего центра, а потому эквивалентных току. И Э. Ферми вскоре после открытия пионов подсчитал, что нейтрон должен примерно 20 % времени проводить в виде системы «протон + пи-минус-мезон» (п -> -р) — возможность возникновения такой системы определяется принципом неопределенности Гейзенберга, по которому, напомним, частица может на какое-то время «одалживать» часть своей энергии (массы) другой, только бы произведение этой энергии на время отдачи не превышало величины постоянной Планка.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже