Читаем Наблюдения и озарения или Как физики выявляют законы природы полностью

Так-то это так, а все же физику-теоретику приходится изучать и применять математику: во-первых, перевод с обычного языка на математический позволяет резко сократить и унифицировать описание явлений, тем более — ход их количественных изменений. Так, колоссальный объем экспериментальных наблюдений Фарадея, плюс еще больший объем всего, что было сделано до него, Максвелл свел всего к четырем уравнениям. Во-вторых, как уже отмечалось, хотя бы в связи с электродинамикой Максвелла, уравнения нередко оказываются «умнее» тех, кто их вывел — они приводят к совершенно нежданным результатам, и мы еще не раз будем иметь повод об этом сказать.

Степень владения математикой у физиков-теоретиков различна: бывают виртуозы расчетов — А. Зоммерфельд, Г. Бете, Л. Д. Ландау[8], Дж. Швингер; бывают физики, старающиеся ограничиться минимальными средствами, — Н. Бор, Э. Ферми, а иногда в физику с успехом входят математики — Дж. фон Нейман, С.Улам[9], Н.Н. Боголюбов (вспоминаем только ученых XX в.). Некоторые физики считают, что математику для физиков нужно вообще излагать иным, чем для математиков, образом — такие курсы математики писали X. А. Лорентц, Я.Б. Зельдович, Ли Цзян-дао (о двух последних — ниже), иногда в книги и даже статьи по физике вставляются разделы по менее знакомым для читателей вопросам математики.

А о весьма противоречивом отношении к математике физиков, блистательно владевших ее методами, говорят их популярные афоризмы:

«Физические законы должны обладать математической красотой» — П. Дирак,

«Элегантность должна быть оставлена портным» — В. Паули.

«В тех случаях, когда физическая сущность вопроса не ясна, не следует искать у математики путеводной нити для ее выяснения» — Я. И. Френкель,

«Математическое требование высшей точности не очень полезно в физике» — Р. Фейнман.

Вкусы и установки у них, как видим, индивидуальны — общего рецепта нет.

Иное мнение у многих математиков. Великий математик Давид Гильберт любил повторять: «Физика слишком трудна для физиков, за нее должны взяться математики». Он даже включил в свой перечень самых острых проблем математики на XX в. задачу аксиоматизации физики и сам занялся проблемами общей теории относительности (успехи подключения математиков к этим проблемам не дали радикальных результатов).

А теперь, чтобы показать всю сложность и неоднозначность проблемы взаимосвязи физики и математики, такой пример. В 1982 г. Нобелевской премии был удостоен Кеннет Вильсон (р. 1936) за теорию фазовых переходов второго рода, причем впервые премия была присуждена за работу, которая не содержала новых физических идей, а носила — во всяком случае внешне — чисто математический характер.

Поясним смысл его работ, для этого нужно некоторое предисловие. Фазовыми переходами первого рода являются переходы, обусловленные поглощением или выделением теплоты, изменением удельной теплоемкости и других термических характеристик тела (например, конденсация пара, кристаллизация и т. п.). Фазовые переходы второго рода связаны с изменением энтропии, т. е., в основном, внутреннего порядка, симметрии: например, переход от ферромагнитного состояния железа к парамагнитному (он происходит при достижении так называемой температуры Кюри, при которой магниты сразу размагничиваются), сюда же относятся переходы в сверхпроводящее и сверхтекучее состояния, о которых мы еще будем говорить (такая классификация фазовых переходов не является абсолютно строгой, фактически существуют и промежуточные виды переходов и т. д.).

Фазовые переходы второго рода, определяемые критическими показателями температуры, давления, и напряженности поля, характеризуются такой особенностью: закон изменения этих величин при подходе к критической точке один и тот же, вне зависимости от того, какой параметр рассматривается, а все попытки расчетов давали только расходящиеся (бесконечные, лишенные физического смысла) значения.

Вильсон подошел к этой проблеме с неожиданной стороны. Он рассчитал эти величины не в обычном трехмерном пространстве или в виде модели в двухмерном или одномерном пространстве, а в пространстве нецелой размерности. Математически можно, например, рассчитать интегралы в пространстве размерности 2,745. Что это такое? — Не знаю.

Но зато, я знаю иное: Вильсон провел расчеты термодинамических величин в пространстве размерности (3 минус малая величина), а по окончании всех расчетов устремил эту самую малую величину к нулю — осталось, как и должно быть, пространство трех измерений и… правильные значения всех величин[10]!

Такие геометрии нецелых размерностей (они называются фрактальными) еще раньше рассматривались математиками. Сейчас они находят интересные применения в теории хаоса: в физике, экономике, социологии и т. д.

Перейти на страницу:

Все книги серии НАУКУ — ВСЕМ! Шедевры научно-популярной литературы

Наблюдения и озарения или Как физики выявляют законы природы
Наблюдения и озарения или Как физики выявляют законы природы

Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой. Поэтому книга не просто захватывает — она позволяет почувствовать себя посвященными в великую тайну. Вместе с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогли эту красоту раскрыть.Первая часть книги, «От Аристотеля до Николы Теслы», расскажет о пути развития науки, начиная с утверждения Аристотеля «Природа не терпит пустоты» и эпициклов Птолемея, и до гелиоцентрической системы Коперника и Галилея и великих уравнений Максвелла. Читатель проделает этот огромный путь рука об руку с гениями, жившими задолго до нас.«От кванта до темной материи» — вторая часть книги. Она рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки зрения обыденной, бытовой ЛОГИКИ' о принципе относительности, замедлении времени, квантовании энергии, принципе неопределенности, черных дырах и темной материи. История загадочной, сложной и увлекательной современной физики раскроется перед читателем.Итак, вперед — совершать открытия вместе с гениями!

Марк Ефимович Перельман , Марк Ефимович Перельман

Научная литература / Прочая научная литература / Образование и наука
Людвиг Больцман: Жизнь гения физики и трагедия творца
Людвиг Больцман: Жизнь гения физики и трагедия творца

В настоящей книге рассказывается о жизни и творчестве выдающегося австрийского физика Людвига Больцмана (1844-1906), автора классических исследований по молекулярно-кинетической теории вещества, статистической физике и термодинамике. Книга состоит из трех частей. Первая часть «Диалог», по существу, представляет собой небольшой исторический очерк о физике «добольцмановского» времени — от появления первых научных идей в Древней Греции и последующего развития физики вплоть до середины XIX века. Вторая часть «Монолог» посвящена описанию жизненного пути и творческой деятельности великого физика. Биографические главы перемежаются с анализом научных трудов Больцмана — от самых первых работ до творений, указывающих новые пути развития физики и составляющих фундамент современной науки. Здесь же описывается бескомпромиссная борьба Больцмана за признание справедливости атомного учения. Наконец, третья часть книги — «Триумф» — представляет собой рассказ о победе идей Больцмана, принесших бессмертие имени ученого, об их жизни и развитии в современной физике.Книга рассчитана на широкий круг читателей, интересующихся историей развития физики; может быть полезна студентам и аспирантам физико-математических вузов.

Олег Павлович Спиридонов

Биографии и Мемуары

Похожие книги

Цикл космических катастроф. Катаклизмы в истории цивилизации
Цикл космических катастроф. Катаклизмы в истории цивилизации

Почему исчезли мамонты и саблезубые тигры, прекратили существование древние индейские племена и произошли резкие перепады температуры в конце ледникового периода? Авторы «Цикла космических катастроф» предоставляют новые научные свидетельства целой серии доисторических космических событий в конце эпохи великих оледенении. Эти события подтверждаются древними мифами и легендами о землетрясениях, наводнениях, пожарах и сильных изменениях климата, которые пришлось пережить нашим предкам. Находки авторов также наводят на мысль о том, что мы вступаем в тысячелетний цикл увеличивающейся опасности. Возможно, в новый цикл вымирания… всего живого?The Cycle Of Cosmic Catastrophes, Flood, Fire, And Famine In The History Of Civilization ©By Richard Firestone, Allen West, and Simon Warwick-Smith

Аллен Уэст , Ричард Фэйрстоун , Симон Уэрвик-Смит

История / Научная литература / Прочая научная литература / Образование и наука