Присуждение любых наград, в том числе и Нобелевских премий, зависит от многих факторов, не только научных, хотя премии по науке присуждаются наиболее объективно (непонятен, правда, пропуск имен таких ученых как А. Зоммерфельд, Г. Гамов, Е. К.Завойский и некоторых других). Но вероятно, самым досадным является присуждение премии О. Гану без Л. Мейтнер. Этот малоприятный факт был частично исправлен тем, что в 1959 г. на их 80-летие Институт ядерных исследований в Берлине был переименован в Институт имени Гана-Мейтнер (предлагается также назвать в ее честь 109-й элемент). После 1938 г. они вместе не работали, жили в разных странах, но умерли оба в 1968 г. в девяносто лет, он 28 июля, она 27 октября.
Открытие явления деления ядер урана сразу же возбудило мысли о возможностях цепных ядерных реакций: суть дела в том, что при каждой такой реакции может высвобождаться много нейтронов, а они могут вызвать другие реакции.
Если взглянуть на периодическую таблицу, то можно заметить, что у легких элементов массовое число примерно вдвое больше порядкового номера (Мозли некогда думал, что это особый закон). С ростом порядкового номера, т. е. числа протонов в ядре, массовое число начинает нарастать быстрее и быстрее — требуется все большее число нейтронов для преодоления кулоновского отталкивания протонов. Но отсюда получается, что если бы удалось разделить, скажем, ядро урана точно пополам, т. е. вместо одного ядра с 92 протонами получить два ядра палладия с 46 протонами в каждом, то в каждом их них достаточно иметь 62–63 нейтрона, всего 124–126, а ведь в ядре урана-238 их было 146! Куда же денутся излишние нейтроны?
Они могут частью распасться — за счет бета-распада перейти в протоны и остаться в ядрах, но частью могут освободиться, вылететь из ядер и вызвать другие ядерные реакции. Сколько же может быть таких освобождающихся нейтронов в реально наблюдаемом распаде, и какие реакции они могут вызвать?
Письмо Лизе Мейтнер и Отто Фриша Бор получил перед самым выездом в США, ситуацию он обдумывал на пароходе. В Нью-Йорке по телеграмме, посланной с корабля, его уже ждали собравшиеся в университете физики, и говорят, что некоторые из них, включая Э. Ферми, даже не дослушав доклад до конца, бросились в лаборатории проверять предположения Мейтнер и Фриша. Так началась работа над атомной бомбой.
У образованных ученых сразу же могла и должна была возникнуть аналогия с цепными химическими реакциями. Можно привести пример такой реакции: если соединить в темноте большие объемы газообразных хлора и водорода, а затем осветить смесь, то происходит взрыв — одиночный квант света стимулирует быструю реакцию синтеза, образования хлористого водорода НСl, но в ее ходе высвобождаются примерно два фотона той же частоты, т. е. становятся возможными два следующих акта синтеза, за ними следует возможность четырех таких актов и т. д., т. е. вероятность дальнейших реакций лавинно нарастает с каждым новым шагом — происходит взрыв. Для этого нужно, чтобы образующиеся кванты не выходили из реагирующего объема газа, т. е. необходима некоторая критическая масса — это, как увидим, важнейшее понятие реакции (можно, конечно, уменьшить величину критической массы, если поместить газ в сосуд с отражающими стенками!).
Теория цепных ядерных реакций была построена одновременно несколькими учеными, не думавшими в тот момент о возможности ее быстрого практического осуществления, в их числе были Я. Б. Зельдович[28]
и Ю. Б. Харитон[29], сотрудники Н.Н. Семенова (1896–1986, Нобелевская премия по химии 1956 г. за развитие теории цепных реакций), хорошо знакомые с этой химической проблематикой.