Читаем Наблюдения и озарения или Как физики выявляют законы природы полностью

Но тогда и протон может часть своего времени проводить как «нейтрон + пи-плюс-мезон» (р ↔ π+n, возможны и переходы р ↔ π0р — «протон + пи-ноль-мезон»). А дальше естественно заключить, что на какую-то меньшую часть времени и, соответственно, на более близком к центру расстоянии нейтрон может породить не один, а два, три и т. д. пионов, а может, скажем, породить на еще меньшее время пару протон-антипротон и т. д. Все такие «временные» частицы называются виртуальными (от латинского «виртуалис» — скрытые, но могущие проявиться) и, как видим на примере магнитных моментов нейтрона, их свойства весьма ясно проявляются и могут быть, в принципе, измерены.

Все эти возникающие и снова исчезающие виртуальные частицы образуют вокруг своего «хозяина» некую виртуальную «шубу». Поэтому основную рассматриваемую частицу никак, с одной стороны, нельзя считать точечной, а с другой стороны, ей нельзя приписывать и строго определенные размеры: ее «шуба» все время дышит, меняется, является динамическим образованием. Приходится для описания свойств этой «шубы», т. е. самой частицы, вводить понятие формфактора, распределения вероятности найти заряды на таком-то расстоянии от ее центра.

Тут естественно было бы задать вопрос: почему мы говорим о виртуальных образованиях вокруг нуклонов, чем электрон хуже? И действительно, вокруг электрона тоже должна образовываться такая шуба, но поскольку его масса мала, то испускать и ловить обратно он скорее всего будет не мезоны, а фотоны, а на меньшие расстояния — и пары электрон-позитрон. О такой шубе электрона мы уже говорили — благодаря ее наличию и возникает черенковское излучение: шуба периодически отрывается от «сверхсветового» в данной среде электрона и превращается в реальный фотон.

Форму форм-факторов нуклонов экспериментально смог определить Роберт Хофштадтер (1915–1990, Нобелевская премия 1961 г.)[41]. Начал он с того, что еще в 1948 г. разработал сцинтилляционный детектор на основе кристалла соли иодида натрия, «легированного» небольшим количеством таллия. При столкновении с таким кристаллом частицы высокой энергии или фотона возникает вспышка света, интенсивность которой пропорциональна энергии частиц или фотона (сцинтилляторами пользовался некогда и Резерфорд, но они были гораздо менее чувствительными). На этой основе Хофштадтер построил сцинтилляционный спектрометр и приспособил его как регистратор углов рассеяния электронов от ускорителя, разгонявшего их до энергии в 500 МэВ, при которой длина волны электрона меньше характерных размеров атомных ядер. Следовательно, ускоритель можно было бы использовать как гигантский электронный микроскоп, позволяющий исследовать структуру ядер: при столкновении с ядром разогнанный электрон в некоторых случаях только отклоняется, как бильярдный шар (случаи, при которых ядро разрушалось, он отбрасывал).

Так Хофштадтеру удалось измерить величину и определить форму многих атомных ядер. Оказалось, что у них примерно одна и та же средняя плотность и объем ядра пропорционален полному числу протонов и нейтронов. Это означает, что в тяжелых ядрах частицы упакованы не более плотно, чем в легких, а почти постоянная плотность ядер оказалась порядка 150 млрд кг на куб. метр (капля воды такой плотности весила бы 2 млн тонн). Но при этом выяснилось, что у всех ядер есть что-то вроде более мягкой «шкуры», именно она и соответствует облаку виртуальных частиц, окружающих ядро.

Когда ускоритель, на котором он работал, был реконструирован и стал разгонять электроны до энергии в 1 ГэВ, Хофштадтер смог перейти к исследованию уже не только ядер, но и структуры протонов и нейтронов. Эту работу он со своей группой выполнил в 1956–1957 годах: были определены размеры такой «шубы» и распределение зарядов внутри обоих нуклонов.

Нуклоны действительно оказались распределенными динамическими образованиями с шубой из облаков виртуальных частиц.

Ну а что будет видно, если залезть в нуклоны еще глубже, т. е. рассмотреть рассеяние более энергичных частиц? В 1969 г. Р. Фейнман, и почти одновременно Дж. Бьеркен (р. 1934), выдвигают партонную (от латинского «партис» — часть) модель нуклона: при глубоконеупругих, т. е. высокоэнергичных и потому чрезвычайно коротких по времени актах рассеяния, нуклон можно рассматривать как совокупность точек-партонов, т. е. при таких энергиях и, соответственно, столь коротких длительностях взаимодействия уже не играет роли, виртуальные ли это образования или нет. Такие акты рассеяния на отдельных партонах (уже не на нуклонах в целом) порождают целые струи вторичных частиц, по составу которых, в принципе, и можно выявить природу самих этих партонов и их распределение по «объему» нуклона. Имеющиеся результаты как будто показывают, что таким партонами являются в основном кварки (о них немного ниже). За это открытие Джером И. Фридман (р. 1930), Генри У. Кендалл (1926–1999) и Ричард Е. Тэйлор (р. 1929) удостоены в 1990 г. Нобелевской премии.

5. Странные частицы

Перейти на страницу:

Все книги серии НАУКУ — ВСЕМ! Шедевры научно-популярной литературы

Наблюдения и озарения или Как физики выявляют законы природы
Наблюдения и озарения или Как физики выявляют законы природы

Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой. Поэтому книга не просто захватывает — она позволяет почувствовать себя посвященными в великую тайну. Вместе с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогли эту красоту раскрыть.Первая часть книги, «От Аристотеля до Николы Теслы», расскажет о пути развития науки, начиная с утверждения Аристотеля «Природа не терпит пустоты» и эпициклов Птолемея, и до гелиоцентрической системы Коперника и Галилея и великих уравнений Максвелла. Читатель проделает этот огромный путь рука об руку с гениями, жившими задолго до нас.«От кванта до темной материи» — вторая часть книги. Она рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки зрения обыденной, бытовой ЛОГИКИ' о принципе относительности, замедлении времени, квантовании энергии, принципе неопределенности, черных дырах и темной материи. История загадочной, сложной и увлекательной современной физики раскроется перед читателем.Итак, вперед — совершать открытия вместе с гениями!

Марк Ефимович Перельман , Марк Ефимович Перельман

Научная литература / Прочая научная литература / Образование и наука
Людвиг Больцман: Жизнь гения физики и трагедия творца
Людвиг Больцман: Жизнь гения физики и трагедия творца

В настоящей книге рассказывается о жизни и творчестве выдающегося австрийского физика Людвига Больцмана (1844-1906), автора классических исследований по молекулярно-кинетической теории вещества, статистической физике и термодинамике. Книга состоит из трех частей. Первая часть «Диалог», по существу, представляет собой небольшой исторический очерк о физике «добольцмановского» времени — от появления первых научных идей в Древней Греции и последующего развития физики вплоть до середины XIX века. Вторая часть «Монолог» посвящена описанию жизненного пути и творческой деятельности великого физика. Биографические главы перемежаются с анализом научных трудов Больцмана — от самых первых работ до творений, указывающих новые пути развития физики и составляющих фундамент современной науки. Здесь же описывается бескомпромиссная борьба Больцмана за признание справедливости атомного учения. Наконец, третья часть книги — «Триумф» — представляет собой рассказ о победе идей Больцмана, принесших бессмертие имени ученого, об их жизни и развитии в современной физике.Книга рассчитана на широкий круг читателей, интересующихся историей развития физики; может быть полезна студентам и аспирантам физико-математических вузов.

Олег Павлович Спиридонов

Биографии и Мемуары

Похожие книги

Цикл космических катастроф. Катаклизмы в истории цивилизации
Цикл космических катастроф. Катаклизмы в истории цивилизации

Почему исчезли мамонты и саблезубые тигры, прекратили существование древние индейские племена и произошли резкие перепады температуры в конце ледникового периода? Авторы «Цикла космических катастроф» предоставляют новые научные свидетельства целой серии доисторических космических событий в конце эпохи великих оледенении. Эти события подтверждаются древними мифами и легендами о землетрясениях, наводнениях, пожарах и сильных изменениях климата, которые пришлось пережить нашим предкам. Находки авторов также наводят на мысль о том, что мы вступаем в тысячелетний цикл увеличивающейся опасности. Возможно, в новый цикл вымирания… всего живого?The Cycle Of Cosmic Catastrophes, Flood, Fire, And Famine In The History Of Civilization ©By Richard Firestone, Allen West, and Simon Warwick-Smith

Аллен Уэст , Ричард Фэйрстоун , Симон Уэрвик-Смит

История / Научная литература / Прочая научная литература / Образование и наука