Читаем Начало бесконечности полностью

Другой способ поставить вычисления в центр физики и справиться с неоднозначностями антропных рассуждений — это представить, что все возможные компьютерные программы уже запущены. То, что мы воспринимаем как реальность, на самом деле виртуальная реальность, созданная одной или несколькими такими программами. Затем мы определим понятия «обычный» и «необычный» в терминах среднего по всем этим программам, считая их в порядке их длины (количества элементарных операций в каждой из них). Но здесь снова подразумевается, что есть предпочтительное представление о том, что такое «элементарная операция». Поскольку длина и сложность программы полностью зависят от законов физики, эта теория снова требует внешнего мира, в котором работают эти компьютеры, — мира, который был бы для нас непостижимым.

Оба эти подхода терпят неудачу, потому что они пытаются обратить направление реальной объяснительной связи между физикой и вычислениями. Они кажутся возможными лишь потому, что опираются на стандартную ошибку Зенона, но применительно к вычислениям: заблуждение о том, что множество классически вычислимых функций имеет в математике априорно привилегированный статус. Но это не так. Единственное, что как-то выделяет данное множество операций, — это то, что они воплощаются законами физики. Вся суть универсальности теряется, если представить, что вычисления каким-то образом предшествовали физическому миру и создавали его законы. Вычислительная универсальность относится только к компьютерам внутри нашего физического мира, которые связаны друг с другом по универсальным законам физики, к которым мы (таким образом) имеем доступ.


Но как все эти сильные ограничения на то, что мы можем знать и что может быть достигнуто с помощью математики и вычислений, включая существование в математике неразрешимых вопросов, уживаются с принципом, гласящим, что проблемы можно решить?

Проблемы — это конфликты идей. Большая часть математических вопросов, которые существуют абстрактно, никогда не появляются в качестве предмета такого конфликта: они никогда не бывают предметом любопытства или центром конфликтующих заблуждений о какой-либо черте мира абстракций. Одним словом, большинство их них просто неинтересны.

Кроме того, напомню, что поиск доказательств не есть цель математики, это просто один из её методов. Цель её в том, чтобы понять, а общий метод, как и во всех областях, — составлять гипотезы и критиковать их, исходя из того, насколько разумны они в качестве объяснений. Нельзя понять математическое утверждение, просто доказав, что оно истинно. Вот почему существуют лекции по математике, а не просто списки доказательств. И наоборот, отсутствие доказательства не обязательно означает, что утверждение нельзя понять. Напротив, обычно математик сначала понимает что-то в рассматриваемой абстракции, затем на основе этого понимания выдвигает предположение, как можно было бы доказать истинные утверждения о ней, и лишь потом их доказывает.

Можно доказать математическую теорему, но она так и не вызовет ни у кого интереса. А недоказанная математическая гипотеза может оказаться весьма плодоносной, порождая множество объяснений, даже если она столетиями будет оставаться недоказанной или даже если её вообще нельзя доказать. Примером такой гипотезы может служить проблема, известная в информатике как «P ≠ NP». Грубо говоря, она заключается в том, что существуют классы математических вопросов, ответы на которые, будь они откуда-то получены, можно эффективно проверить с помощью универсального (классического) компьютера, но нельзя эффективным образом вычислить. (У «эффективных» вычислений есть техническое определение, которое примерно соответствует тому, что мы имеем в виду под этой фразой на практике.) Практически все исследователи, работающие в области вычислительной теории, убеждены в том, что это предположение верно (что ещё раз опровергает идею о том, что математические знания состоят только из доказательств). Хотя его доказательство и неизвестно, существуют достаточно разумные объяснения того, почему следует ожидать, что это утверждение истинно, а объяснений в пользу противоположного исхода нет. (И поэтому считается, что то же самое верно и для квантовых компьютеров.)

Более того, на этой гипотезе строится огромное количество математических знаний одновременно и полезных, и интересных. Сюда входят теоремы вида «если гипотеза верна, то из неё следует вот такой интересный факт». Теорем о том, что было бы, будь гипотеза неверна, меньше, но они тоже представляют интерес.

Перейти на страницу:

Похожие книги

Ешь правильно, беги быстро
Ешь правильно, беги быстро

Скотт Джурек – сверхмарафонец, то есть соревнуется на дистанциях больше марафонских, вплоть до 200-мильных. Эта книга – не просто захватывающая автобиография. Это еще и советы профессионала по технике бега и организации тренировок на длинные и сверхдлинные дистанции. Это система питания: Скотт при своих огромных нагрузках – веган, то есть питается только натуральными продуктами растительного происхождения; к этому он пришел, следя за своим самочувствием и спортивными результатами. И это в целом изложение картины мира сверхмарафонца, для которого бег – образ жизни и философия единения со всем сущим.Это очень цельная и сильная книга, которая выходит за рамки беговой темы. Это книга о пути к себе.На русском языке издается впервые.

Скотт Джурек , Стив Фридман

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Суперпамять
Суперпамять

Какие ассоциации вызывают у вас слова «улучшение памяти»? Специальные мнемонические техники, сложные приемы запоминания списков, чисел, имен? Эта книга не предлагает ничего подобного. Никаких скучных заучиваний и многократных повторений того, что придумано другими. С вами будут только ваши собственные воспоминания. Автор книги Мэрилу Хеннер – одна из двенадцати человек в мире, обладающих Сверхъестественной Автобиографической Памятью – САП (этот факт научно доказан). Она помнит мельчайшие детали своей жизни, начиная с раннего детства.По мнению ученых, исследовавших феномен САП, книга позволяет взглянуть по-новому на работу мозга и на то, как он создает и сохраняет воспоминания. Простые, практичные и забавные упражнения помогут вам усовершенствовать память без применения сложных техник, значительно повысить эффективность работы мозга, вспоминая прошлое, изменить к лучшему жизнь уже сейчас. Настройтесь на то, чтобы использовать силу своей автобиографической памяти!

Герасим Энрихович Авшарян , Мэрилу Хеннер

Детская образовательная литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Самосовершенствование / Психология / Эзотерика