Читаем Начертательная геометрия: конспект лекций полностью

Ее боковые грани являются частями горизонтально-проецирующих плоскостей, а ребра являются отрезками вертикальных прямых. Исходя из этого ребра следует проецировать на горизонтальную плоскость в виде точек, а на фронтальную плоскость – без искажения (AA = aa1 и т. д.).

Нижнее основание призмы ABC находится в горизонтальной плоскости, поэтому ее можно изобразить на этой плоскости без искажения: ABC = abc. Фронтальная проекция пирамиды аbс совпадает с осью х.

Оба основания дают одинаковые горизонтальные проекции (abc = a1b1c1). Верхнее основание A1B1C1 параллельно горизонтальной плоскости, т. е. его фронтальная проекция а1b1с1 параллельна оси х.


При рассмотрении призмы сверху (рис. 57) будет видно только верхнее основание призмы.

Горизонтальные проекции трех точек, которые лежат на нижнем основании, помещены в скобки с целью показа, того, что точки А, В и С невидимы, если смотреть на призму из данного положения.

Для определения невидимых элементов на фронтальной проекции обращаются к горизонтальной проекции.

Направление луча зрения показано на рисунке 58 стрелкой. Видно, что грань AA1C1С при таком угле зрения будет невидимой.

На рисунке 58 показана треугольная пирамида, которая находится на горизонтальной плоскости.


Гранями пирамиды являются треугольники, являющиеся частями плоскостей общего положения.

Если рассматривать пирамиду сверху, можно увидеть всю ее боковую поверхность, т. е. для горизонтальной проекции не существует невидимых элементов.

Из рассуждений, подобных рассуждениям в случае призмы, можно убедиться, что на фронтальной проекции невидима грань SAC (рис. 59).

3. Цилиндр и конус

Цилиндр – это фигура, поверхность которого получается вращением прямой m вокруг оси i, расположенной в одной плоскости с этой прямой. В случае, когда прямая m направлена параллельно оси вращения, получается цилиндр (рис. 60), когда она пересекает ось вращения, полученная фигура будет являться конусом (рис. 61).


Прямой круговой цилиндр имеет образующие, направленные перпендикулярно горизонтальной плоскости (рис. 61). По этой причине вне зависимости от выбора точки N на его поверхности горизонтальная проекция n этой точки находится на основании цилиндра.


Основание цилиндра составляет линию пересечения боковой поверхности цилиндра с горизонтальной плоскостью, т. е. это горизонтальный след поверхности цилиндра. Следовательно, боковая поверхность прямого кругового цилиндра, который стоит на горизонтальной плоскости, рассматривается как горизонтально-проецирующая поверхность по отношению к любой линии, начерченной на его поверхности.


На рисунке 63 показаны проекции цилиндра.

Фронтальная проекция аа1, которая образует АА1, ограничивает слева фронтальную проекцию цилиндра, т. е. является ее контурной образующей. На профильной плоскости ее проекция а"а"1располагается на оси симметрии этой проекции. Профильная проекция d"d"1образующей DD1 является контурной, а ее фронтальная проекция dd1 находится на оси симметрии и т. д.

Если мы посмотрим на цилиндр сверху (рис. 63), увидим только его верхнее основание.

Рассмотрим горизонтальную проекцию. Если провести фронтальную плоскость Р, разделяющую цилиндр на две равные части, можно заметить, что все точки, лежащие на передней половине цилиндра, будут видны при рассмотрении цилиндра спереди, т. е. на фронтальной проекции. Боковая поверхность цилиндра, которая расположена ниже следа Ph, видима на фронтальной проекции, а остальная его часть невидима, т. е. образующая CC1 на фронтальной проекции невидима.

Для выделения невидимых элементов на профильной проекции, необходимо обратиться к горизонтальной проекции. След Qh профильной плоскости разделяет горизонтальную проекцию на две части. Боковая поверхность, которая расположена слева от Qh, видима на профильной проекции и т. д. Таким образом образующая BB1 невидима на профильной проекции.

На рисунке 64 показан прямой круговой конус, который стоит на горизонтальной плоскости.


Основание конуса и линия пересечения поверхности конуса с любой горизонтальной плоскостью Р проецируются на горизонтальную плоскость в виде окружности, а на фронтальную плоскость – в виде отрезка, который равен диаметру этой окружности.

Рассмотрим на рисунке 65 и все проекции четырех образующих, ограничивающих какой-либо из контуров проекций.


Проекция as образующей AS ограничивает контур на фронтальной проекции, а ее профильная проекция a"s" лежит на оси симметрии проекции (на образующей AS находится произвольная точка) и т. д.

При рассмотрении конуса сверху все точки боковой поверхности видимы (рис. 65).

Для отыскания невидимых элементов на фронтальной проекции проведем на горизонтальной проекции след Ph той плоскости, которая разделяет конус на две части (видимую и невидимую), если смотреть на конус спереди, т. е. образующая SD в этом случае невидима.

Аналогично можно убедиться, что образующая SB невидима на профильной проекции.

3. Шар, тор и кольцо

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика