Читаем Нанонауки полностью

Итак, неуемная миниатюризация оторвалась от электроники и вторглась в другие уделы. Ее нашествие всегда и повсюду сопровождалось немалой сумятицей: много волнений, например, вызвала ее атака на механику. Станки и машины, предназначенные для производства деталей посредством точения, фрезерования и сверления, дошли до предела точности. Еще удавалось изготавливать прекрасные детали с допуском порядка одного микрометра, но двигаться дальше, казалось, уже некуда. В 1980-е годы в Калифорнийском университете оптимизацией обработки оксида кремния занимался Рихард С. Мюллер — он искал способы введения изоляторов в интегральные схемы. Знакомство с фотолитографией подсказало ему мысль о новом методе формирования микродорожки: пластинка кремния покрывается слоем оксида кремния и на поверхности этого оксидного слоя рисуется дорожка, которая потом гравированием врезается в собственно кремниевую пластинку. Из этой разработки родилась вся кремниевая микромеханика: процедуры, освоенные микроэлектроникой, вытеснили все привычные процессы, и детали, производимые методами микромеханики, стали совсем крошечными, и, главное, резко повысилась точность допусков и посадок. Размеры деталек съежились с величин порядка 100 мкм до считаных микрометров, а допуск точности уменьшился До нескольких нанометров. Потом из кремниевой микромеханики родились так называемые «микроэлектромеханические системы» (МЭМС — MEMS), под которыми подразумевались механические элементы (датчики, исполнительные механизмы и пр.) собственно электроники: эти устройства или принимают какой-то (не электрический) сигнал, или подают (электрическую) команду механическим элементам. И микроэлектронная промышленность начала производить МЭМС в количествах, сравнимых с количествами произведенных транзисторов, и при этом с малыми издержками.

МЭМС образовали маленькую — и не очень вместительную — иерархию самых мелких деталей и механизмов пока еще микронного масштаба: производились дорожки, насосы, клапаны, пружины, зажимы, зубчатые передачи с микрометровыми шестернями — речь шла уже о десятых долях микрометра (1 мкм = 1000 нм; 100 нм = 0,1 мкм). Подобные механизмы порой приводятся в движение электрическими моторчиками размером с красное кровяное тельце. МЭМС применяются в печатающих устройствах — в тех узлах, которые разбрызгивают красители, наносимые на бумагу; для управления миниатюрными зеркалами в видеопроекторах или для повышения быстродействия джойстиков, применяемых в видеоиграх. Сегодня МЭМС трудятся в фотоаппаратах, видеокамерах, часах, кардиостимуляторах и на них приходится 20–40 % стоимости современного автомобиля. Желающим примеров можно указать на датчики давления в кондиционерах и системах обеспечения внутреннего климата в конторских помещениях, на измерители силы торможения, на индикаторы уровня топлива в бензобаке и на сенсоры надувных подушек в автомобилях (в самых «навороченных» моделях устанавливается до шести различных измерителей ускорения).

Высокие достоинства МЭМС очевидны. Они благоденствуют, продолжая извлекать выгоды из прогресса литографии, о котором печется могучая старшая сестра — микроэлектроника, располагающая и исследовательскими лабораториями, и ресурсом для освоения лабораторных новинок. К примеру, кремний производится в виде брусков толщиной в 100 нм, то есть в тысячную долю толщины волоса, но длина бруска — 100 мкм. Увеличим эту мелкоту до привычного нам масштаба: пусть длина бруска равна метру. В таком случае его толщина будет равна миллиметру — понятно, что в нашем мире это невозможно (брусок сломается под собственной тяжестью).

Но в мире расстояний, измеряемых микрометрами, такие бревна или прутья (или микрорычаги) существуют и при этом не только не ломаются, но даже не гнутся. Правда, они колеблются, и частоты этих колебаний весьма высоки. Эти вибрации вызываются тяжелыми молекулами: когда некая молекула усаживается на микробрусок, частота его колебаний меняется, и нетрудно догадаться, что изменение частоты определяется массой чужой молекулы. Важно не замерить эту массу (массы молекул давно известны), но заметить ее присутствие. А колебания микробруска (точнее, изменение этих колебаний) помогают опознать именно вот эту молекулу среди миллиона других молекул.

Перейти на страницу:

Все книги серии Galileo

Похожие книги

Метафизика
Метафизика

Аристотель (384–322 до н. э.) – один из величайших мыслителей Античности, ученик Платона и воспитатель Александра Македонского, основатель школы перипатетиков, основоположник формальной логики, ученый-естествоиспытатель, оказавший значительное влияние на развитие западноевропейской философии и науки.Представленная в этой книге «Метафизика» – одно из главных произведений Аристотеля. В нем великий философ впервые ввел термин «теология» – «первая философия», которая изучает «начала и причины всего сущего», подверг критике учение Платона об идеях и создал теорию общих понятий. «Метафизика» Аристотеля входит в золотой фонд мировой философской мысли, и по ней в течение многих веков учились мудрости целые поколения европейцев.

Аристотель , Аристотель , Вильгельм Вундт , Лалла Жемчужная

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Современная русская и зарубежная проза / Прочее / Античная литература / Современная проза
История леса
История леса

Лес часто воспринимают как символ природы, антипод цивилизации: где начинается лес, там заканчивается культура. Однако эта книга представляет читателю совсем иную картину. В любой стране мира, где растет лес, он играет в жизни людей огромную роль, однако отношение к нему может быть различным. В Германии связи между человеком и лесом традиционно очень сильны. Это отражается не только в облике лесов – ухоженных, послушных, пронизанных частой сетью дорожек и указателей. Не менее ярко явлена и обратная сторона – лесом пропитана вся немецкая культура. От знаменитой битвы в Тевтобургском лесу, через сказки и народные песни лес приходит в поэзию, музыку и театр, наполняя немецкий романтизм и вдохновляя экологические движения XX века. Поэтому, чтобы рассказать историю леса, немецкому автору нужно осмелиться объять необъятное и соединить несоединимое – экономику и поэзию, ботанику и политику, археологию и охрану природы.Именно таким путем и идет автор «Истории леса», палеоботаник, профессор Ганноверского университета Хансйорг Кюстер. Его книга рассказывает читателю историю не только леса, но и людей – их отношения к природе, их хозяйства и культуры.

Хансйорг Кюстер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Физика повседневности. От мыльных пузырей до квантовых технологий
Физика повседневности. От мыльных пузырей до квантовых технологий

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Андрей Варламов , Аттилио Ригамонти , Жак Виллен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература