Читаем Нанонауки полностью

В макроскопическом масштабе выключатель — то есть прерыватель тока — выглядит как металлическая пластинка с пружиной. Опрокидываясь, как коромысло, эта железка замыкает два электрических контакта. В «мире внизу» на роль такого замыкателя годится одиночный атом. В 1987 году Авирам уже предлагал молекулу-выключатель, и мы даже ставили эксперимент, пробуя использовать молекулу в качестве выключателя. В 1993 году. Дон Эйглер предложил вместо молекулы, которая, для того чтобы переключать ток, должна менять свою форму, взять какой-нибудь атом и заставить его работать «коромыслом», замыкающим или размыкающим электрические контакты. Смещением атома можно было бы управлять, прикладывая напряжение в несколько вольт между иглой и поверхностью подложки: меняя напряжение, заставить атом двигаться туда, куда захочется экспериментатору. Нет напряжения, и ток ничтожно мал; стало быть, выключатель — в положении «выключено». Когда же атом, опрокинувшись, прикоснется к кончику иглы, ток вырастет в полсотни раз — и положение выключателя переменится на «включено». Итак, состояние атома-переключателя можно менять, то есть переводить из положения «включено» в положение «выключено», и наоборот. Вот и пришло время на весь мир объявить о создании первого атомного выключателя. Десятью годами спустя Франческа Мореско из Берлинского университета построила выключатель на молекуле, которая у нее работала коромыслом-замыкателем. Использовать в переключателе молекулы, а не атомы, кажется очень заманчивым: у молекулы есть известные химические свойства, которые можно менять, меняя тем самым ее взаимодействие с поверхностью и, значит, опрокидывая эту молекулу, причем очень быстро.

Следующий нанофизический эксперимент имел дело с электрическим подключением одиночной молекулы. В 1987 году мы с Ари Авирамом уже ставили опыт с подключением молекулы-выключателя. Молекулы были рассеяны на металлической поверхности, в которой был установлен первый контактный электрод (то есть поверхность и была одним из электродов). Экспериментатор подводил иглу туннельного микроскопа к какой-нибудь из этих молекул — игла служила вторым электродом. Надо было медленно опустить иглу на молекулу, чтобы установить с ней электрический контакт. Но откуда мы знаем, когда именно — в какой момент — устанавливается контакт между иглой и молекулой?

Чем ближе игла опускается к молекуле, тем сильнее она ее деформирует. При этом ток через молекулу тем больше, чем сильнее она изуродована. Однако если игла опустится совсем низко, то она просто раздавит молекулу. Так что надо искать тонкий компромисс, добиваясь возможно большего значения тока при возможно меньшем искажении формы молекулы. Чтобы лучше подбирать высоту иглы, чего в середине 1990-х мы не умели, Джим Гимжевски и я решили попробовать вновь подключить иглу к молекуле. На этот раз мы взяли молекулу фуллерена (в ней 60 атомов углерода, а по виду она похожа на футбольный мяч). Эксперимент состоял в следующем. Мы поместили несколько молекул фуллерена на поверхности кристалла золота и стали опускать иглу на одну из этих молекул, измеряя ток в цепи, состоящей из поверхности золотого кристалла, молекулы фуллерена и иглы. Нам хотелось понять, как зависит ток от расстояния между острием иглы и молекулой. Поначалу сила тока росла плавно, но затем мы отметили резкий скачок — когда расстояние между иглой и поверхностью уменьшилось до 1,1 нм. Слегка меняя положение иглы, чтобы как можно точнее определить переломную точку, мы ее нашли, при этом контакт иглы и молекулы фуллерена установился, а форма ее была не искажена; впервые мы установили электрический контакт с одной-единственной молекулой!

Подключив таким образом молекулу, мы замерили ее электрическое сопротивление. Это «электрическое сопротивление» не имело отношения к электродам, то есть поверхности кристалла и игле, но существовало внутри молекулы. Годом спустя Дон Эйглер таким же образом замерил электрическое сопротивление самого тонкого проводка в мире — проводника из двух атомов ксенона. Так начинались эксперименты с электрическими свойствами считаных атомов или одной-единственной молекулы.

МЕХАНИКА МОЛЕКУЛЫ

Теперь вспомним о первых механических опытах с одиночной молекулой. Мы уже рассказывали про иглу туннельного микроскопа, толкавшую одну молекулу. В 1998 году началась — и совершенно случайно! — эра «наномеханики». Но для начала лучше вспомнить о том, что случилось немножко раньше.

Перейти на страницу:

Все книги серии Galileo

Похожие книги

Метафизика
Метафизика

Аристотель (384–322 до н. э.) – один из величайших мыслителей Античности, ученик Платона и воспитатель Александра Македонского, основатель школы перипатетиков, основоположник формальной логики, ученый-естествоиспытатель, оказавший значительное влияние на развитие западноевропейской философии и науки.Представленная в этой книге «Метафизика» – одно из главных произведений Аристотеля. В нем великий философ впервые ввел термин «теология» – «первая философия», которая изучает «начала и причины всего сущего», подверг критике учение Платона об идеях и создал теорию общих понятий. «Метафизика» Аристотеля входит в золотой фонд мировой философской мысли, и по ней в течение многих веков учились мудрости целые поколения европейцев.

Аристотель , Аристотель , Вильгельм Вундт , Лалла Жемчужная

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Современная русская и зарубежная проза / Прочее / Античная литература / Современная проза
История леса
История леса

Лес часто воспринимают как символ природы, антипод цивилизации: где начинается лес, там заканчивается культура. Однако эта книга представляет читателю совсем иную картину. В любой стране мира, где растет лес, он играет в жизни людей огромную роль, однако отношение к нему может быть различным. В Германии связи между человеком и лесом традиционно очень сильны. Это отражается не только в облике лесов – ухоженных, послушных, пронизанных частой сетью дорожек и указателей. Не менее ярко явлена и обратная сторона – лесом пропитана вся немецкая культура. От знаменитой битвы в Тевтобургском лесу, через сказки и народные песни лес приходит в поэзию, музыку и театр, наполняя немецкий романтизм и вдохновляя экологические движения XX века. Поэтому, чтобы рассказать историю леса, немецкому автору нужно осмелиться объять необъятное и соединить несоединимое – экономику и поэзию, ботанику и политику, археологию и охрану природы.Именно таким путем и идет автор «Истории леса», палеоботаник, профессор Ганноверского университета Хансйорг Кюстер. Его книга рассказывает читателю историю не только леса, но и людей – их отношения к природе, их хозяйства и культуры.

Хансйорг Кюстер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Физика повседневности. От мыльных пузырей до квантовых технологий
Физика повседневности. От мыльных пузырей до квантовых технологий

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Андрей Варламов , Аттилио Ригамонти , Жак Виллен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература