Читаем Нанонауки полностью

Особенное структурирование вещества ради получения материала с желательными свойствами известно давно да и применяется с незапамятных времен. Еще в античные времена умели вплавлять наночастицы меди в стекло, чтобы стекло стало красноватым. Растворяемые краски тоже содержали наночастицы в эмульсии. Угольная или ламповая — она же голландская — сажа тоже состоит из частиц углерода диаметром от 10 до 1000 нм. Об этом писали еще в учебниках в XIX веке. И такие же наночастицы служат — и всегда служили — красителями в чернилах и туши. Те же наночастицы сажи в 1917 году стали добавлять в надувные шины, чтобы служили подольше. Наночастицы платины, родия, палладия работают в автомобильных каталитических конвертерах: они сидят в крошечных порах керамического блока — поры в керамике увеличивают площадь ее соприкосновения с выхлопным газом. Наночастицы ускоряют химические реакции, в результате которых содержащиеся в выхлопных газах оксид углерода (угарный газ) и оксиды азота превращаются в воду и диоксид углерода (углекислый газ).

Новизна наноматериалов по сравнению с материалами традиционными состоит в химической структуре повторяющегося основного мотива, который становится много сложнее. Возделывающие ниву наноматериалов и не заглядывают на поля монументализации, где молекула становится машиной, — они полагают, что ей уготована участь элементарного кирпичика для построения наноматериала. Наноматериалы — это такая необъятная область исследований, что ей следовало бы посвятить отдельную книгу. И не одну. Но никакого отношения к нанотехнологии наноматериалы не имеют.

Немало ученых, как и встарь, видят в молекуле всего лишь маленький «кусочек» вещества. А разговоры последних лет о молекулах-машинах научная среда нередко встречала насмешками, хотя это давно уже не просто разговоры, речь идет о реальных экспериментах. Молекула коренным образом изменила свой статус и, утратив анонимность, вышла из толпы множества себе подобных и равно безликих, чтобы обрести индивидуальность, — и как только у молекулы появилось «лицо», так она выказала неслыханную доступность по отношению к измерительным приборам и процедурам. Откликаясь на вызов, брошенный монументализацией, мы должны отыскать новаторские способы и приемы изготовления подобных молекул-приборов и молекул-машин, добиваясь, чтобы такая огромная молекула содержала ровно столько атомов, сколько требуется для выполнения ее работы, и не больше. И понятно, никто не скажет, до каких размеров и до какой сложности дорастут эти машины.

Глава 5

Наннобактерии

Из элементарного кирпичика, затерянного среди миллиардов миллиардов многих иных таких же кирпичиков, молекула за какие-то пятнадцать лет превратилась в нечто вполне самостоятельное. Теперь она может воплотиться в научный прибор или в сложную установку, а то и машину, и эти новые роли молекулы становятся все сложнее и многочисленнее, ей под силу все более трудные дела, и со дня на день должна прилететь весточка об успешной монументальной сборке молекулы-машины. Раз уж нам удалось понять, как собираются белки, мембраны и рибосомы в живой клетке, то неужели мы не сумеем воспроизвести структуру и организацию хотя бы самых простейших, но и самых крошечных форм жизни? А вдруг, когда мы соберем все составляющие вместе, получится искусственная клетка и эта клетка окажется живой?

Насколько нам известно сегодня, самые маленькие из всех живых организмов, населяющих нашу планету, — бактерии. А самые маленькие бактерии — меньше 200 нм. Вот это малютки! Для сравнения: обычные бактерии часто разрастаются до 1000 нм, а средний размер клеток человеческого тела — около 20 000 нм. Вирусы, правда, еще меньше (200–300 нм), но их не считают живыми организмами, потому что они не умеют ни жить самостоятельно, ни репродуцировать себя (то есть сами по себе вирусы не способны размножаться).

Предполагается, что могут быть открыты бактерии еще меньшие, чем все известные малютки: они должны быть не длиннее 100 нм, а то и 20 нм! Если эти крошечные «нанобактерии» и в самом деле будут обнаружены, то они окажутся куда меньше всего того, что мы привыкли называть жизнью. В самом деле, они настолько малы, что их, кажется, и быть не может. Ведь для того, чтобы питаться и размножаться, то есть, иначе говоря, быть живым и, следовательно, жить, организм заведомо должен содержать в себе всё, что необходимо для выживания: непременно ДНК, рибосомы — чтобы вырабатывать белки, митохондрии, ну и цитоплазму — кисель, где все это плавает, упакованное в плазматическую мембрану, которую защищает жесткая стенка (без нее, правда, как-то обходится микоплазма — мельчайший из известных живых организмов). Теоретики подсчитали, что живой организм никак не может быть меньше 180 нм.

Перейти на страницу:

Все книги серии Galileo

Похожие книги

Метафизика
Метафизика

Аристотель (384–322 до н. э.) – один из величайших мыслителей Античности, ученик Платона и воспитатель Александра Македонского, основатель школы перипатетиков, основоположник формальной логики, ученый-естествоиспытатель, оказавший значительное влияние на развитие западноевропейской философии и науки.Представленная в этой книге «Метафизика» – одно из главных произведений Аристотеля. В нем великий философ впервые ввел термин «теология» – «первая философия», которая изучает «начала и причины всего сущего», подверг критике учение Платона об идеях и создал теорию общих понятий. «Метафизика» Аристотеля входит в золотой фонд мировой философской мысли, и по ней в течение многих веков учились мудрости целые поколения европейцев.

Аристотель , Аристотель , Вильгельм Вундт , Лалла Жемчужная

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Современная русская и зарубежная проза / Прочее / Античная литература / Современная проза
История леса
История леса

Лес часто воспринимают как символ природы, антипод цивилизации: где начинается лес, там заканчивается культура. Однако эта книга представляет читателю совсем иную картину. В любой стране мира, где растет лес, он играет в жизни людей огромную роль, однако отношение к нему может быть различным. В Германии связи между человеком и лесом традиционно очень сильны. Это отражается не только в облике лесов – ухоженных, послушных, пронизанных частой сетью дорожек и указателей. Не менее ярко явлена и обратная сторона – лесом пропитана вся немецкая культура. От знаменитой битвы в Тевтобургском лесу, через сказки и народные песни лес приходит в поэзию, музыку и театр, наполняя немецкий романтизм и вдохновляя экологические движения XX века. Поэтому, чтобы рассказать историю леса, немецкому автору нужно осмелиться объять необъятное и соединить несоединимое – экономику и поэзию, ботанику и политику, археологию и охрану природы.Именно таким путем и идет автор «Истории леса», палеоботаник, профессор Ганноверского университета Хансйорг Кюстер. Его книга рассказывает читателю историю не только леса, но и людей – их отношения к природе, их хозяйства и культуры.

Хансйорг Кюстер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Физика повседневности. От мыльных пузырей до квантовых технологий
Физика повседневности. От мыльных пузырей до квантовых технологий

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Андрей Варламов , Аттилио Ригамонти , Жак Виллен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература