Читаем Нанотехнологии. Правда и вымысел полностью

Локальный управляемый межэлектродный поатомный массоперенос с применением силового туннельного микроскопа – в настоящее время единственный метод получения предельной миниатюризации при формировании наноразмерных объектов. Пример полученного изображения был ранее представлен на рис. 4, при этом полутона формируются поточечным оксидированием (с различным потенциалом) поверхности.

В настоящее время рассматриваются некоторые потенциальные технологии создания наноэлектрических приборов: лазерная 193-нм литография, имеющая возможности преодолеть дифракционный предел, экстремальная ультрафиолетовая литография (ЭУФЛ) с длиной волны 13 нм, а также печатная литография (наноимпринтинг).

В августе 2006 года в Колледж научных наноисследований и разработок (College ofNanoscale Science andEngineering (CNSE)) при Университете Олбани (США) голландской компанией ASML совместно с Nikon впервые в мире были поставлены установки ЭУФЛ – Alpha Demo Tool (ADT) стоимостью 65 млн долларов. Это оборудование было предназначено не для производства, а только для исследовательских целей. Установку интегрировали в нанотехнологический комплекс (Albany NanoTech Complex) международного промышленно-университетского консорциума International Venture for Nanolithography (Invent). Членами глобального консорциума Invent являются такие лидеры мирового рынка электронной техники, как IBM, AMD, Qimonda и Micron Technology. При этом в выполнении исследовательских программ ЭУФЛ в CNSE намерены также принять участие японские компании Sony и Toshiba.

Следующую демонстрационную ЭУФЛ-установку компания ASML поставила в бельгийскую исследовательскую организацию IMEC , которая заключила соглашение о совместном проведении экспериментов в области ЭУФЛ с исследовательской группой IMEC и американским CNSE. Вначале исследования будут проводиться в США на Олбанском нанотехнологическом комплексе CNSE, а затем – отдельными исследовательскими центрами в зависимости от готовности к работе соответствующего оборудования.

Общая цель участников проекта – показать достоинства и практическую возможность реализации ЭУФЛ для формирования 32-нм (и ниже) рисунка наноэлектронных приборов.

Корпорация Intel , один из лидеров в разработке электронного оборудования 32-нм технологии и потенциальный потребитель ЭУФЛ-установок, продолжила исследования различных методов совершенствования существующей лазерной 193-нм литографии для использования ее в более низком топологическом размере. Не получив вовремя необходимые материалы и оборудование для ЭУФЛ, корпорация в настоящее время рассматривает данный метод для возможной реализации 22-нм технологии ориентировочно только в 2011 году.

Японская компания Toshiba на установке Imprio 250 компании Molecular Imprints Inc. (США) методом наноимпринтинга изготавливает опытные образцы с суб-20-нм разрешением при 1-нм однородности воспроизведения критических размеров. Ее достижения в этой области заставляют чипмейкеров обратить на данную технологию пристальное внимание. В настоящее время инфраструктура и возможности импринтинга достаточно развиты в производстве светодиодов и жестких дисков.

В апреле 2007 года в США поступили в продажу компьютеры с емкостью жесткого диска 1 Тб (1012 байт). На нем можно разместить информацию, равнозначную 50 млрд печатных страниц (для производства такого количества бумаги необходимо было бы переработать около 50 тыс. деревьев), 380 ч (около 16 суток) видеоматериала в формате DVD, миллион фотографий в высоком разрешении или около 250 тыс. музыкальных файлов (от полутора до двух лет беспрерывного прослушивания).

Вероятно, в наиболее быстрых и производительных компьютерах будущего будет использоваться именно наноэлектронная технология, возможно спинотроника или фотоника. Однако не исключено, что самые малые компьютеры создадут на принципиально другой элементной базе. По Э. Дрекслеру, такой базой может стать наномеханика. Им предложены механические конструкции для основных компонентов нанокомпьютера – ячеек памяти, логических байтов. Основными их элементами являются вдвигаемые и выдвигаемые стержни, взаимно запирающие движение друг друга.

К отдельному направлению нанотехнологических исследований следует отнести работы по формированию (наноинженерии) поверхности для получения заданных функциональных свойств с высокими прочностными и триботехническими характеристиками.

Для этих целей широко используется PVD-метод нанесения нанопокрытия (PVD – Physical Vapour Deposition – физическое парофазное осаждение) и CVD-метод (CVD – Chemical Vapour Deposition – химическое парофазное осаждение), причем CVD-метод нанесения принципиально проще реализовать. Поскольку осажденные слои временами имеют толщину слоя в диапазоне нескольких мкм, используются также термины «тонкопленочная техника», «тонкопленочная технология» и «тонкие пленки».

Технология химического осаждения (CVD-метод) практически не имеет ограничений по химическому составу применяемых для нанесения материалов, а следовательно, и структуре получаемых покрытий. При этом частицы могут быть осаждены на всю поверхность обрабатываемой детали. Участки, где покрытие не требуется, покрываются специальными защитными составами.

Осуществление CVD-метода при заполнении пространства реакционно-способным газом (кислородом, азотом или углеводородами) в результате химической реакции между атомами осаждаемых металлов и молекулами газа позволяет производить нанесение оксидных, нитридных и карбидных покрытий.

Для получения одинаковых свойств всего покрытия в объеме рабочей камеры (особенно большой) необходимо обеспечить оптимальные потоки газа. С этой целью применяются специальные системы подачи газа – так называемый газовый душ.

Установки для CVD-метода, как правило, имеют достаточно большие габариты, на которых для предотвращения опасных выбросов технологических газов в атмосферу используются специальные системы высококачественных фильтров.

Технология нанесения нанопокрытий физическим методом (PVD-метод), при которой металлы, сплавы или химические соединения осаждаются в глубоком вакууме путем подвода тепловой энергии или бомбардировки частицами, заключается в том, что материал покрытия различными способами переводится из твердого состояния в паровую фазу и затем конденсируется на поверхности подложки (рис. 60).

К PVD-методам относят также ионное плакирование и катодное распыление (ионно-плазменное распыление). При реализации систем PVD применяются камерные печи сопротивления для создания глубокого вакуума менее 10-5 мбар (рис. 61).

Перейти на страницу:

Похожие книги

Тайны нашего мозга или Почему умные люди делают глупости
Тайны нашего мозга или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из «общеизвестных фактов», которые не всегда верны...Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг.Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном «природном механизме». Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами; личной жизнью, обучением, карьерой, здоровьем. Приятный бонус - забавные иллюстрации.

Сандра Амодт , Сэм Вонг

Медицина / Научная литература / Прочая научная литература / Образование и наука
100 великих загадок современности
100 великих загадок современности

Новая книга из серии «100 великих» посвящена ряду загадок отечественной и всемирной истории XX и начала XXI века. Порой кажется, что столетие, лишь недавно канувшее в Лету, дает нам поводов для размышлений и материала для исследований больше, чем все прошедшие века и тысячелетия человеческой истории. Две мировые войны, множество локальных военных конфликтов, революции и гражданские войны, заговоры, путчи и перевороты, экономические «чудеса» и тяжелейшие кризисы, выдающиеся достижения культуры и великие научные открытия, взлеты и падения человеческого духа – все это уместилось на относительно небольшом хронологическом отрезке. Читателю предлагаются оригинальные версии, результаты исследований ученых, краеведов, журналистов.

Николай Николаевич Непомнящий

Энциклопедии / Прочая научная литература / Образование и наука