Читаем Нанотехнологии. Правда и вымысел полностью

На 11-й Международной выставке средств обеспечения безопасности государства «Интерполитех-2007» Научно-исследовательский институт стали (Москва) и Институт прикладных нанотехнологий (Зеленоград) продемонстрировали первые опытные отечественные образцы «жидкой» брони, которая в перспективе может применяться для бронежилетов и других средств индивидуальной защиты.

Создание «жидкой» брони заключается в обработке обычной баллистической ткани гелевой композицией на основе фторполимерной композиции (химических соединений) с наночастицами оксида алюминия. Обработанная ткань внешне не отличается от аналога, но при ударном воздействии на нее пули или осколка находящийся внутри гель мгновенно затвердевает, препятствуя разрушению ткани и снижая поражающее воздействие.

Российскими специалистами исследовалась эффективность защитных свойств опытного образца ткани из «жидкой» брони и стандартного образца, изготовленного из 18 слоев баллистической ткани. Испытания проводились методом метания в них шариков массой 1,04 г и диаметром 6,3 мм (аналог пули) со скоростью 526 м/с. В результате испытаний было установлено, что «жидкая» броня обеспечивает лучшие защитные свойства, выдерживая нагрузку от шариков, летящих со скоростями до 558 м/с.

Проведенные исследования указывают, что имеющие место многочисленные западные публикации о разработках «жидкой» брони в Великобритании и США на основе материалов с прослойкой (или пропиткой) из наночастиц имеют под собой реальную основу.

С учетом относительной простоты изготовления и малого веса таких материалов, они уже сейчас вполне пригодны для применения в качестве средств защиты полицейских и некоторых других должностных лиц. В настоящее время в России и за рубежом ведутся исследования с целью обеспечения эффективности «жидкой» брони для защиты военнослужащих от современного стрелкового оружия и осколков большинства взрывных устройств.

Такое поведение суспензии может быть использовано и в амортизационных устройствах различных конструкций, где возможно ограничение максимальной скорости потока суспензии за счет нелинейного изменения вязкости.

Возможность практической реализации рассмотренных принципов «жидкой» наноброни также вызывает неоднозначные, точнее, негативные отзывы отечественных ученых-химиков, предлагающих удостоить разработчиков к «позорной» Шнобелевской премии (присуждаемой за сомнительные достижения, которые невозможно воспроизвести или же нет смысла этого делать) по химии! В то же время, как мне стало известно из заслуживающих доверия источников, такие исследования в России и за рубежом интенсивно продолжаются, а полученные результаты вселяют надежду в эффективность будущих результатов.

Как отмечается, бронежилеты из такого материала способны достаточно эффективно защитить человека от удара ножом, некоторых осколочных боеприпасов и пуль, выпущенных из огнестрельного оружия.

Другим изобретением, которое может быть в перспективе использовано для военных целей, является разработка так называемого плаща-невидимки. Как видим, некоторые фантастические сюжеты русских народных сказок о шапках-невидимках и коврах-самолетах начинают сбываться.

В таких исследованиях заинтересованы различные спецслужбы и армейские круги, которые и финансируют данные разработки.

Основная задача, стоящая перед разработчиками данного маскирующего устройства, заключается в том, чтобы сделать объект невидимым за счет выполнения двух необходимых требований: свет не должен отражаться от объекта и должен полностью обходить его. При этом необходимо, чтобы наблюдатель видел только задний фон, а не сам предмет, замаскированный устройством-невидимкой.

По данным интернет-ресурса Physorg.com, ученые и инженеры из центра нанотехнологий Бирка (Birck Nanotechnology Center) при университете Пердью, опираясь на теоретические расчеты, выполненные в 2006 году британскими физиками, создали виртуальную модель, состоящую из множества наноигл, торчащих наружу из центральной спицы, которая напоминает круглую массажную щетку. За счет отклонения кончиками игл видимого света объекты позади щетки становятся видны, но сам предмет, окруженный цилиндрическим массивом наноигл, – невидим.

Для изготовления наноигл необходимо оборудование, которое сейчас применяется при производстве устройств с помощью нанотехнологий, так как диаметр игл в теоретической модели составляет примерно 10 нм при длине в сотни нанометров.

Расчеты показывают, что устройство сделает объект невидимым только при одной строго определенной длине волны в 632,8 нм, что соответствует красному свету. Однако с помощью этой же модели «можно создать “плащ-невидимку” для любой длины волны в видимом спектре», – утверждает русский ученый Владимир Михайлович Шалаев, в настоящее время – профессор Колледжа электрического и компьютерного инжиниринга в университете Пердью.

По словам В. Шалаева, хотя модель работает только для одной частоты, ей уже сейчас можно найти практическое применение – например, производство защитной системы, позволяющей сделать солдат незаметными для приборов ночного видения, поскольку системы ночного видения определяют только конкретную длину волны. Другое возможное применение – маскировка объектов от «лазерных целеуказателей», используемых военными для поиска и подсветки цели.

Уже сейчас в ряде армий, прежде всего США, применяются специальные покрытия типа «Антилуч» для военных самолетов, кораблей и бронетехники, способные полностью нейтрализовать импульсы боевых лазеров.

«Создание модели, работающей для всех цветов видимого света одновременно, – трудная техническая задача, но я полагаю, что это возможно, это явно осуществимо. В принципе такой “плащ” может быть сколь угодно большим – размером с человека или самолет», – заявил В. Шалаев.

Другая группа ученых в составе Джона Пендри (John Pendry) из Империал-колледжа в Лондоне, Дэвида Шурига (David Schurig) и Дэвида Смита (David Smith) из Университета Дьюка, одновременно с Ульфом Леонардом (Ulf Leonhardt) из университета Св. Андрея в Шотландии опубликовала результаты собственных исследований – математические принципы, лежащие в основе устройства оптической маскировки.

Леонард пишет, что исследование университета Пердью представляет «.теоретические симуляции, которые показывают, что модифицированная римская чашка, созданная на основе современной технологии производства наноматериалов, будет работать как устройство для обеспечения невидимости… Любой объект, который вы поместите внутрь, исчезнет, как будто растворится в воздухе – при условии, что его наблюдают через поляризованные окрашенные очки именно этого цвета». Он сравнивает разработанную в центре Пердью модель с созданием в Риме «первого оптического метаматериала» – разновидности стекла, содержащего наночастицы золота. При обычном дневном свете изготовленная из этого стекла чашка кажется зеленой, а при внутренней подсветке становится рубиновой.

Другая группа исследователей разрабатывает концепции маскировки объектов размером меньше и больше длины волны видимого света. Такие системы требуются для защиты от различного рода радарных и поисковых устройств. Однако главная цель на сегодняшний день – все-таки принципиальное технологическое решение для маскировки произвольного объекта в спектре видимого для людей света. Наверное, следует признать, что эта задача имеет еще и некоторый психологический аспект.

Предполагается, что устройство может быть создано именно из так называемых немагнитных метаматериалов. В отличие от разработок для обеспечения невидимости в микроволновом спектре, новая модель не обладает магнитными свойствами. Это значительно облегчает маскировку объектов в видимом спектре, но в то же время небольшая часть видимого света все же отражается от маскируемого объекта. Для его производства необходим особый диэлектрик – метаматериал с отрицательным (левосторонним) коэффициентом преломления. В данном же случае с возможным использованием метаматериалов японский теоретик Томоширо Очиаи (Tomoshiro Ochiai) с коллегами теоретически рассчитал концептуальную модель реального «плаща-невидимки».

По поводу метаматериала следует заметить, что в 1967 году советский физик Виктор Георгиевич Веселаго предсказал возможность создания материала с отрицательным коэффициентом преломления (метаматериала), который он назвал «левосторонним». В своей статье «Электродинамика веществ с одновременно отрицательными значениями е и ^», опубликованной в вестнике «Успехи физических наук», ученый пришел к заключению, что с появлением такого материала существенно изменяются почти все известные оптические явления распространения волн.

В следующей разработке модель «плаща-невидимки» представляет собой пустотелый цилиндр. Попадающие на него электромагнитные волны огибают внутреннюю полость цилиндра, продолжая движение на его противоположной стороне. В результате волновой фронт остается полностью неизменным, как если бы на его пути не было никакого цилиндра. Однако главный недостаток заключается в том, что в настоящее время все это «функционирует» опять же только для волн строго определенной частоты. Положительной же стороной является тот факт, что предложенный японскими теоретиками вариант устройства полностью соответствует основным требованиям, которые предъявляются к реальному «плащу-невидимке»: не отражать видимого света и не вызывать изменения фазы и направления проходящего излучения.

Имеются и более примитивные устройства, например разработка японского ученого-практика Сусуму Тачи (Susumu Tachi). Его «плащ-невидимка» состоит из частиц (экранчиков), каждая из которых воспроизводит свою часть изображения, полученного камерой на противоположной стороне. Однако невидимым человек является только строго с одной стороны (определенного угла зрения), со всех остальных сторон он видится «обычным» человеком в «необычном» (смешном) плаще.

Следует, однако, отметить тот факт, что невидимое невооруженным глазом может быть заметно с помощью специальных приборов, и наоборот. Наглядный пример – американский самолет-невидимка F-117 Night Hawk (известный в России как «Стелс», Stealth), созданный по новейшим технологиям, который 27 марта 1999 года был сбит югославскими ПВО с помощью достаточно старого советского зенитно-ракетного комплекса (ЗРК) С-125 «Нева» (принятого на вооружение еще в 1961 году).

Во время бомбардировок самолетами НАТО территории союзной Югославии американцы безнаказанно бомбили стратегические объекты страны: мосты, аэродромы, электростанции и т. д., рассчитывая, что югославские ПВО их не видят. Оказалось, что часть устаревших средств ПВО Югославии работает на других частотах, и «невидимки» ими регистрируются. Результатом стали обломки американского бомбардировщика «Стелс», показанные телевидением бывшей Югославии.

С технической стороны, несомненным достоинством сербской батареи ПВО являлись устаревшие радары и ракеты. Современные высокочастотные радары отслеживают летящие объекты, регистрируя отраженный от них радиосигнал. В случае со «Стелс» короткие волны рассеиваются особой карбоновой конструкцией и формой корпуса самолета так, что он не регистрируется на экранах локатора. Оказалось, что для длинноволновых (низкочастотных) радаров подобная форма самолета не является препятствием, и они регистрируют любой крупный объект в воздухе.

Возможно, еще одним фактором, сыгравшим на руку югославским ПВО, стала дождливая погода в этот период времени. Не исключено, что влажная от дождя поверхность «Стелс» оказалась менее защищена от сигналов радаров. Поэтому особое место и в этом случае могут занять гидрофобные покрытия, позволяющие обеспечить несмачиваемость защитных антирадарных поверхностей.

Как известно, наибольшее развитие нанотехнологии получили в электронной, компьютерной и вообще электротехнике, именно поэтому они также заслужили пристальное внимание военных кругов развитых стран мира.

Миниатюризация компонентной базы вычислительной техники и увеличение тактовой частоты представляют собой главное направление развития нанотехнологий. К настоящему времени доказана работоспособность ряда активных компонентов – транзисторов, диодов, ячеек памяти, состоящих из нанотрубок, нескольких молекул или даже единственной молекулы. Передача сигнала может осуществляться одним электроном. Пока не решены проблемы, связанные со сборкой таких компонентов в единую систему и соединением их нанопроводами. Тем не менее можно не сомневаться, что решение этих проблем – вопрос времени. Поэтому было бы удивительно, если бы эти разработки в первую очередь не были использованы в военных целях.

В связи с открытием в 2001 году нового агрегатного состояния вещества (конденсата Бозе-Эйнштейна) и проведением ряда экспериментов по умножению числа атомов (по аналогии с умножением числа фотонов в оптических лазерах) военные круги США в рамках программы «Звездные войны» заинтересовались возможностью изготовления «атомного лазера». В проведенном группой ученых эксперименте количество атомов в пучке, проходящем через установку, удалось увеличить в тридцать раз.

Такое устройство могло бы значительно увеличить мощность боевого луча и, следовательно, эффективность его применения, тем более что именно недостаточная мощность современных оптических лазеров не позволяет в полной мере реализовать намеченные планы.

Первые разработки в области наноскопических датчиков уже успешно применяются в военных целях. Новые поколения сенсорных массивов и аналитического программного обеспечения создадут новые возможности для внедрения в чужие базы данных и перехвата нужной информации. Испытанные американцами во время военной кампании в Афганистане микроскопические датчики Smart Dust («умная пыль»), похожие на пушинки миллиметровых размеров, показали высокую эффективность. Их новизна заключается в том, что сигналы большого количества разнородных элементарных датчиков принимаются и анализируются централизованно, а сами датчики очень дешевы в производстве, так как являются массовым продуктом.

Микроскопические частички Smart Dust разработала и изготовила группа исследователей под руководством профессора химии и биохимии Майкла Сэйлора (Michael Sailor) из калифорнийского университета в Сан-Диего (University of California, San Diego – UCSD). Сэйлор заявил: «Эти пылинки – ключ к разработке роботов размером с песчинку. В будущем можно будет создать миниатюрные устройства, передвигающиеся в крошечных средах вроде вен или артерий к определенным целям, обнаруживать там химические или биологические составы и передавать информацию во внешний мир. Такие устройства могли бы использоваться для контроля чистоты питьевой или морской воды, обнаружения опасных химических или биологических агентов в воздухе и даже нахождения и уничтожения поврежденных клеток в организме человека».

Создание «умной пыли» – это результат электрохимического процесса механической обработки и химических модификаций. Вначале был взят кремниевый чип, из которого гравировкой химикатами получили пористую фотонную структуру. Затем эту структуру модифицировали, чтобы получилось цветное двустороннее зеркало – красного цвета с одной стороны, зеленого – с другой (рис. 74).

Перейти на страницу:

Похожие книги

Тайны нашего мозга или Почему умные люди делают глупости
Тайны нашего мозга или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из «общеизвестных фактов», которые не всегда верны...Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг.Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном «природном механизме». Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами; личной жизнью, обучением, карьерой, здоровьем. Приятный бонус - забавные иллюстрации.

Сандра Амодт , Сэм Вонг

Медицина / Научная литература / Прочая научная литература / Образование и наука
100 великих загадок современности
100 великих загадок современности

Новая книга из серии «100 великих» посвящена ряду загадок отечественной и всемирной истории XX и начала XXI века. Порой кажется, что столетие, лишь недавно канувшее в Лету, дает нам поводов для размышлений и материала для исследований больше, чем все прошедшие века и тысячелетия человеческой истории. Две мировые войны, множество локальных военных конфликтов, революции и гражданские войны, заговоры, путчи и перевороты, экономические «чудеса» и тяжелейшие кризисы, выдающиеся достижения культуры и великие научные открытия, взлеты и падения человеческого духа – все это уместилось на относительно небольшом хронологическом отрезке. Читателю предлагаются оригинальные версии, результаты исследований ученых, краеведов, журналистов.

Николай Николаевич Непомнящий

Энциклопедии / Прочая научная литература / Образование и наука