Так вот, на мой взгляд, большинство противников исследований стволовых клеток лично никогда не сталкивались с проблемами, которые эти исследования могут в перспективе решить (или хотя бы позволить приблизиться к их решению), — наследственными и врожденными дефектами развития, а также многими неизлечимыми болезнями: детским церебральным параличом (ДЦП), болезнью Альцгеймера, болезнью Паркинсона и др. Зато политические противники — премьер-министр Великобритании Гордон Браун и лидер оппозиции Дэвид Камерон — согласованно высказались за продолжение исследований в этой области, потому что сами воспитывают тяжелобольных детей, и для них это не этический вопрос, а вопрос жизни или смерти. У нанотехнологий противников не меньше — в той же самой Англии, например принц Чарльз. Но оба этих направления не являются альтернативными. Скорее, они дополняют друг друга.
В средствах массовой информации было опубликовано печальное известие — умер тяжелобольной шестилетний сын Дэвида Камерона — Айван. Стоит надеяться, что взаимно дополняющее развитие медицинских нанотехнологий и совершенствование методик применения стволовых клеток может позволить в будущем дать таким же безнадежно больным детям и вообще людям шанс не только жить, но и стать полноценными членами человеческого общества.
Директор Лаборатории нанофотоники (Laboratory for Nanophotonics), профессор Университета Райса в Хьюстоне Наоми Халас (Naomi Halas) и Питер Нордлендер (Peter Nordlander) создали новый класс наночастиц с уникальными оптическими свойствами — наногильзы. Имея диаметр в 20 раз меньший, чем у красных кровяных телец (эритроцитов), они свободно перемещаются по кровеносной системе. К поверхности гильз особым образом прикрепляются специальные белки — антитела, поражающие раковые клетки. Через несколько часов после их введения организм облучают инфракрасным светом, который наногильзы преобразуют в тепловую энергию. Эта энергия и разрушает раковые клетки, причем соседние здоровые клетки при этом практически не повреждаются.
Уникальная нанотехнология была успешно протестирована на подопытных мышах с раковыми опухолями. Уже через 10 дней после облучения все больные животные полностью избавились от недуга. Причем, как отмечается, последующие анализы не выявили у них никаких очагов новых злокачественных образований.
Аналогичные исследования в данной области ведет австралийская фирма
По заявлению ученых из университета штата Миссури (Колумбия, США), так как все человеческие болезни возникают на уровне клетки, «биологически совместимые зеленые и золотые наночастицы могут использоваться при диагностировании и даже лечении раковых и офтальмологических заболеваний».
Марк Гринстафф (Mark Greenstaff) из Бостонского университета доложил о весьма успешных работах по созданию наноразмерных разветвленных полимеров для лечения глазных ран.
Исследователи из Гонконгского университета — профессора Ратледж Эллис-Бенке (Rutledge Ellis-Behnke) и Геральд Шнайдер (Gerald Schneider) дополнительно проинформировали научную общественность, что в ближайшее время приступят к клиническому апробированию технологии под названием «нанонейровязание разорванного глазного тракта с восстановлением его функций». Данная методика фактически является технологией завтрашнего дня и позволит решить ряд серьезных медицинских задач в области офтальмологии.
«Наша технология позволяет соорудить над разорванным глазным трактом нановолоконный мост, иногда мы можем с таким же успехом воздвигнуть строительные леса, состоящие из самособирающихся нановолоконных пептидов», — заявил профессор Эллис-Бенке.