В рамках этого проекта для повышения энергосбережения можно ввести понятие «умное остекление» помещений, способное реагировать на изменения в освещенности и температуре окружающей среды соответствующим изменением прозрачности и теплопроводности.
Углеродные аэрогели, обладающие электропроводящими свойствами и высоким коэффициентом оптического поглощения инфракрасного излучения, также являются перспективным материалом для высокотемпературной тепловой изоляции.
Очень значительную экономию электрической энергии может дать повсеместный и обязательный переход на газоразрядные лампы дневного света, особенно на светодиодную осветительную технику.
В нашей стране первые открытия в этой области были сделаны Олегом Владимировичем Лосевым (1903–1942), работавшим в Ленинградском физико-техническом институте и Нижегородской радиотехнической лаборатории, еще в 1923 году. В книге «У истоков полупроводниковой техники: избранные труды», вышедшей в свет только в 1972 году, так описываются наблюдения ученого: «У кристаллов карборунда (полупрозрачных) можно наблюдать (в месте контакта) зеленоватое свечение при токе через контакт всего 0,4 мА… Светящийся детектор может быть пригоден в качестве светового реле как безынертный источник света». О. В. Лосев умер в блокадном Ленинграде, отказавшись от эвакуации в глубь страны, и многие полученные им результаты были забыты.
Может быть именно поэтому первые светодиоды были изготовлены за рубежом в 1962 году, а уже в 1968 году появились первая светодиодная лампочка для индикатора Monsanto и первый дисплей от Hewlett Packard.
К 1976 году были созданы оранжевые, желтые и желтозеленые светодиоды такой мощности, что они были видны и при ярком солнечном свете. До 1985 года светодиоды использовались исключительно в качестве индикаторов. В 1990 году светоотдача полупроводниковых диодов достигла уже 10 лм/Вт, что позволило им стать равноценной заменой обычным лампам накаливания. В настоящее время светоотдача составляет более 60 лм/Вт.
Принципиальная схема современного светодиода показана на рис. 50. В корпусе из прозрачной пластиковой линзы
Рассмотрим принцип работы и процесс создания светодиодного прибора. Классическая схема изготовления светодиода заключается в следующем. На поверхности сапфирового кристалла (подложке) выращиваются кристаллические слои полупроводникового материала, например на основе гетероструктур типа InGaN/AlGaN/GaN (индий-галлий-азот/алюминий-галлий-азот/галлий-азот), толщиной от 100 нм до 4,5 мкм (рис. 51). Продолжительность эпитаксиального роста светодиодной структуры, способной излучать свет при пропускании через нее электрического тока, составляет около шести часов.
На полученной пластине методами фотолитографической обработки, реактивного ионного травления, вакуумного напыления и др. создаются светоизлучающие кристаллы для изготовления полупроводниковых приборов. При этом на одной пластине могут находиться до 4000 кристаллов, которые разделяются на отдельные кристаллы (чипы) лазерной резкой.
Полученные чипы монтируются на специальные электрические платы, где ультразвуковой сваркой осуществляется соединение контактных площадок кристаллов и электропроводящих элементов печатных плат. Кристаллы заливаются компаундом (затвердевающим составом) для надежной фиксации и защиты от внешнего воздействия.
Для изготовления готового светового прибора разработано два конструкторских решения:
• группу кристаллов монтируют на печатную плату, коммутируют, заливают компаундом, и в результате получается готовый светодиодный модуль;
• несколько дискретных (отдельных) светодиодов устанавливают на общую печатную плату.
Полученный блок светодиодов (матрица) в дальнейшем применяется для создания различной осветительной техники и приборов, в том числе для подводного использования.