В 2005 году компания
С каждым днем в мире накапливается все больше информации, и необходим рост вычислительных мощностей, предусмотренный первым законом Г. Мура (основателя корпорации
Современные процессоры состоят более чем из миллиарда транзисторов, но первые образцы наноустройств сразу же смогут увеличить это число примерно в 1000 раз. Цель будущего десятилетия — создать процессор с более чем одним триллионом транзисторов. Соотношение производительности процессора к аналогичному показателю процессора Pentium 4 будет примерно аналогично производительности современного компьютера по сравнению с первыми ЭВМ на электронных лампах.
Останавливаясь на развитии квантовой нанотехнологии, следует отметить наиболее важные направления электроники: разработку лазеров и мазеров. Уже сейчас на базе приборов квантовой электроники создаются устройства для радиоэлектроники и бытовой техники, лазерные указатели (рис. 55), приборы точного измерения расстояний (дальномеры), которые широко применяются в вооружении (например, лазерных прицелах и т. д.), квантовые стандарты частоты, гироскопы, системы оптической многоканальной связи, дальней космической связи, радиоастрономии и т. п.
Энергетическое воздействие лазерного концентрированного излучения на вещество используется в промышленной технологии и военных целях. Известны многолетние исследования американских военных ученых в рамках программы «звездных войн» (разработки систем противоракетной обороны — ПРО) по созданию высокоэффективного лазерного оружия для поражения космических и наземных объектов. Лазеры также находят широкое и самое разнообразное применение в биологии и медицине.
По прогнозам ученых, с помощью атомного лазера на основе конденсата Бозе-Эйнштейна можно будет вести изготовление микросхем, собирая их из атомов поштучно.
При использовании углеродных нанотрубок компьютер, эквивалентный современному образцу с 1 млн транзисторов, может иметь объем 0,01 мкм3, а компьютер с памятью 1 Тб — объем 1 мкм3. Как и в случае с наноэлектроникой, быстродействие наномеханического компьютера будет определяться возможностью отвода теплоты. Расчеты Дрекслера показывают, что при температуре окружающей среды около 300 К на 1 Вт рассеиваемой мощности такой компьютер будет осуществлять приблизительно 1016 операций в секунду. При мощности 100 нВт (предполагается, что такую мощность сможет без специального охлаждения рассеять упомянутый выше компьютер с объемом 0,01 мкм3) будет обеспечиваться производительность 109 операций в секунду, что примерно эквивалентно мощному современному настольному компьютеру.
В Институте квантовой оптики имени Макса Планка