Читаем Нанотехнологии полностью

А теперь поговорим о возможностях создания сверхминиатюрной вычислительной техники. Со времен лекции 1959 года эта область стремительно развивалась, так что возникла совершенно новая ситуация, и я буду обсуждать только новейшие достижения и перспективы развития. Давайте спросим себя, что нам необходимо для создания компьютера?

Собственно говоря, любое вычислительное устройство всего лишь должно уметь обращаться с числами, то есть воспринимать числа в какой-то записи, обрабатывать их и выдавать ответ в считываемом виде. Поэтому первейшей задачей выступает сама возможность как-то записывать числа!

Новейшие достижения науки дают нам возможность воспользоваться для записи самыми крошечными из известных нам объектов – атомами! Напомню, что проще всего записывать числа в двоичной системе, пользуясь всего двумя числами (обозначающими ноль и единицу), так что любое число может представлено в виде N разрядов двоичной системы. Поведение атомно-молекулярных объектов определяется законами квантовой механики, для которой характерна дискретность значений параметров. Это обстоятельство исключительно удобно для решения поставленным задач, так как эти системы могут находиться в двух разных состояниях (в действительности число таких состояний может быть очень большим, но для вычислительной математики вполне достаточно наличия даже двух четко выраженных разных состояний). В качестве простейших примеров укажу, что спин атома может иметь два противоположных направления (вверх/вниз), молекула аммиака – два основных энергетических состояния (высокое/низкое) и т. п. Короче говоря, в микромире всегда можно найти удобные для использования структуры с двумя характерными состояниями, что вполне достаточно для записи чисел и создания вычислительных систем. Например, вы можете принять, что атом в возбужденном спиновом состоянии (спин направлен вверх) соответствует числу 1 (единице), а атом с направленным вниз спином – числу 0 (нулю). Это означает, что я могу записать любое число, затратив на это столько атомов, сколько разрядов содержит его обозначение в двоичном коде. Запись будет иметь вид цепочки атомов с направленными вверх и вниз атомами (означающими 1 или 0 соответственно). Учитывая малые размеры атомов, для такой записи мне понадобится лишь совершенно ничтожное количество вещества!

20.10. Обратимость вычислительных и управляющих процессов

Далее, нам необходимо решить проблему обработки и вычислений на основе записанных таким образом чисел. Каким образом это можно осуществить на уровне атомов? Вы все знаете, что для «обработки» чисел в компьютерах используется лишь небольшое число операций и разных типов элементов, а сложность действия достигается математиками за счет использования очень большого числа элементов и комбинирования их действий.

Проблема осложняется тем, что мы привыкли рассуждать о работе компьютеров на примере электрических схем и устройств типа транзисторов, к которым по входным и выходным проводам подаются сигналы в виде импульсов напряжения (в простейшем случае наличие импульса означает число 1, а его отсутствие – число 0). Такие схемы не похожи на рассматриваемые нами атомы в разных квантовых состояниях, но эта разница в действительности является несущественной, что я покажу на основе анализа работы простейших вычислительных сетей (Фейнман рисует на доске простую схему с двумя входами и одним выходом). Вот в качестве примера схема AND, с двумя входами (А и В) и одним выходом С, используемая для логического сложения. Наличие сигнала на входящих и исходящей линии означает число 1, а его отсутствие – число 0. Работа такой схемы сводится к тому, что при сигналах 1 на обоих входах она подает на выходе сигнал 1, а при отсутствии сигнала на одном или обоих каналах – сигнал 0. Такое поведение соответствует логическому сложению, вследствие чего ее называют обычно схемой совпадения. Такой системе соответствует структура простейшего транзистора.

Для проведения вычислений принципиально нужна еще небольшая схема NOT (схема отрицания, с одним входом и одним выходом), изменяющая значение сигнала на обратное (то есть при сигнале 1 на входе вы получаете на выходе 0, и наоборот). Удивительно, но этих двух типов простеньких схем практически достаточно для создания компьютера, поскольку их сочетания позволяют создать много новых вычислительных элементов. Например, их комбинация (NOT + AND) дает схему NAND (отрицание + совпадение), когда выходной сигнал 0 соответствует двум сигналам 1 на входах, а выходной сигнал 1 возникает в тех случаях, когда хоть один из входных сигналов не равен 1. Комбинируя такие схемы и соединяя их по определенным правилам, можно смонтировать компьютер, способный осуществлять практически любые вычисления.

Перейти на страницу:

Все книги серии Мир материалов и технологий

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука