Читаем Наполовину мертвый кот полностью

Привычное нам олово в обычных условиях — белый металл, пластичный и ковкий. При нормальной плюсовой температуре олово выглядит так, что никто не может усомниться в его принадлежности к классу металлов. Но при температуре ниже всего 13,2°C (чуть ниже комнатной температуры!) устойчивое состояние олова иное. Начиная с этой температуры, в структуре олова начинается перестройка. Белое олово превращается в порошкообразное серое, или альфа-олово, и чем ниже температура, тем больше скорость этого превращения. Максимума она достигает при минус 39°C.

Плотность серого олова заметно меньше, чем белого. Видимый результат превращения белого олова в серое называют «оловянной чумой» — она проявляется в виде серых пятен на белом олове, чем и напоминает чуму. Кроме того, чумой этот процесс назван потому, что для начала процесса превращения белого олова в серое достаточно незначительного количества «затравки» — кристаллов серого олова. Словно заразная болезнь, серое олово расползается, заражая здоровый металл.

Итак, давайте не забывать, что наноструктурированные материалы метастабильны. И хорошо заранее тщательно проверить, как они ведут себя в различных условиях, прежде чем в условиях сильных магнитных полей или космического пространства наш материал неожиданно для нас заболеет какой-нибудь наноструктурной ветрянкой или метастабильной корью.

Но проверять надо не только материалы для космических аппаратов или термоядерных реакторов — токамаков (именно там существуют такие сильные магнитные поля, превышающие магнитные поля Солнца). Наноструктурные материалы будут повсюду: в автомобильных и железнодорожных мостах, подверженных постоянной вибрации, в корпусах самолетов, в которые попадают сильные электрические разряды — молнии во время грозы, в контактных сетях скоростных электропоездов, подверженных длительному воздействию постоянного тока — текущего в одну сторону, в отличие от привычного нам переменного. И главное, чего мы хотим от этих материалов, — чтобы он не подвел. А если материал новый — такой риск нельзя сбрасывать со счетов.

Риск того, что достаточно проверенный новый материал может в неординарных условиях повести себя не так, как мы того ожидаем, имеет своего «тезку». Речь идет о риске нештатного поведения нового материала в стандартных условиях, чего мы тоже от него не ожидаем, но по иным основаниям — ложной уверенности, необоснованного доверия к качеству, предъявляемому наиболее высокотехнологичными секторами экономики.

При создании космических аппаратов применяют новый наноматериал — кермет. Зерна металла, размером до 5 нм, окруженные такими же зернами другого металла или его окисла (а чтобы такое получилось, металлов должно быть несколько), спекают под давлением. Получается композит — много металлов вперемешку. Почему металлы разные? Очень просто. Нанопорошок получают размолом металла специальными мельницами (есть и другие способы, но сейчас нам это не важно). При размоле частицы становятся все меньше: начинают с размера несколько микрон и доходят до наноразмера. Однако начиная с диаметра частиц около 25 нм процесс помола сталкивается с препятствием. Отдельные, более мелкие частицы предпочитают слипаться — между ними образуются перемычки, и наноструктура нарушается. А нам нужны частицы от 10 до 5 нм. Именно они обладают нужными нам свойствами. Если соседние частицы принадлежат разным металлам, такого слипания не происходит, как минимум быстро.

Но у нас нет гарантии, что зерно кермета не будет укрупняться с течением длительного времени. Сегодня космический аппарат — как правило, спутник, живущий менее 5–7 лет[20], или вообще одноразовые ракетоносители и разгонные блоки. Этой проблемой можно и не озадачиваться.

В основе некоторых современных автомобилей лежат технологии авиастроения. Таковы, например, компании «Субару» и «Мазда». Существует устойчивое мнение об «авиационном» генезисе некоторых автомобилестроительных компаний, например «Ауди». Как же — авиационные технологии, примененные в автомобилестроении; качество, недоступное другим! Прекрасная основа для продвижения своей продукции.

Представьте, что кто-то решит перенести космические технологии в нашу «земную» жизнь, например в судостроение, под лозунгом: космическое — значит надежное. Гражданское судно или военный корабль, живущие 40 лет и более, — норма. Но как поведет себя критически важная деталь из кермета через 20–25 лет? В рамках космических разработок этого никто не проверял.

Для того чтобы точно знать, как ведет себя материал с течением длительного времени, нужно это самое время. Не каждый процесс можно ускорить, быстро и надежно промоделировать численными методами. Все эти методы сами требуют верификации и, прежде всего, натурного опытного подтверждения, т. е. времени.

Но мы торопимся. У нас множество планов, новых конструкторских решений, которые стали возможными только благодаря появлению нового материала. Такая ситуация — особенность наноматериалов. Мы их для этого и разрабатывали и создавали: сделать невозможное. И мы не можем ждать.

Перейти на страницу:

Похожие книги

Как управлять сверхдержавой
Как управлять сверхдержавой

Эта книга – классика практической политической мысли. Леонид Ильич Брежнев 18 лет возглавлял Советский Союз в пору его наивысшего могущества. И, умирая. «сдал страну», которая распространяла своё влияние на полмира. Пожалуй, никому в истории России – ни до, ни после Брежнева – не удавалось этого повторить.Внимательный читатель увидит, какими приоритетами руководствовался Брежнев: социализм, повышение уровня жизни, развитие науки и рационального мировоззрения, разумная внешняя политика, когда Советский Союза заключал договора и с союзниками, и с противниками «с позиций силы». И до сих пор Россия проживает капиталы брежневского времени – и, как энергетическая сверхдержава и, как страна, обладающая современным вооружением.

Арсений Александрович Замостьянов , Леонид Ильич Брежнев

Публицистика
Свой — чужой
Свой — чужой

Сотрудника уголовного розыска Валерия Штукина внедряют в структуру бывшего криминального авторитета, а ныне крупного бизнесмена Юнгерова. Тот, в свою очередь, направляет на работу в милицию Егора Якушева, парня, которого воспитал, как сына. С этого момента судьбы двух молодых людей начинают стягиваться в тугой узел, развязать который практически невозможно…Для Штукина юнгеровская система постепенно становится более своей, чем родная милицейская…Егор Якушев успешно служит в уголовном розыске.Однако между молодыми людьми вспыхивает конфликт…* * *«Со времени написания романа "Свой — Чужой" минуло полтора десятка лет. За эти годы изменилось очень многое — и в стране, и в мире, и в нас самих. Тем не менее этот роман нельзя назвать устаревшим. Конечно, само Время, в котором разворачиваются события, уже можно отнести к ушедшей натуре, но не оно было первой производной творческого замысла. Эти романы прежде всего о людях, о человеческих взаимоотношениях и нравственном выборе."Свой — Чужой" — это история про то, как заканчивается история "Бандитского Петербурга". Это время умирания недолгой (и слава Богу!) эпохи, когда правили бал главари ОПГ и те сотрудники милиции, которые мало чем от этих главарей отличались. Это история о столкновении двух идеологий, о том, как трудно порой отличить "своих" от "чужих", о том, что в нашей национальной ментальности свой или чужой подчас важнее, чем правда-неправда.А еще "Свой — Чужой" — это печальный роман о невероятном, "арктическом" одиночестве».Андрей Константинов

Александр Андреевич Проханов , Андрей Константинов , Евгений Александрович Вышенков

Криминальный детектив / Публицистика