Манипуляционные свойства руки робота многогранны и динамичны. Робот берет детали или тяжелые собранные узлы на разном удалении и неодинаковой высоте, переносит их по сложным траекториям в обход препятствий, продвигая через узкие отверстия, закрепляя в нужном положении на станке, держателе, поддоне. Перемещение происходит с высокими скоростями, в обстановке постоянно меняющейся производственной среды. "Ну и что, - скажет читатель, - на это и даны роботу мощные мускулы, подвижные суставы железного скелета". Это, разумеется, верное замечание, которое свидетельствует о том, что читатель уже неплохо разбирается в "физиологии" робота, однако настало время поговорить и о его "психологии".
Кроме известных силовых свойств, мускулы робота должны быть идеально управляемыми, они должны мгновенно и точно выполнять команды "мозга" расслабляться и напрягаться, производя ровно то усилие, которое необходимо, чтобы поднять, но не раздавить хрупкую лампу, кинескоп, микромодуль. Итак, силовой привод робота- это прежде всего универсальная управляемость.
Как же происходит управление роботом, откуда берется его "ум", дающий такую бездну манипуляционных возможностей? "Ум" робота берется от его создателя - человека, а человек берет этот манипуляционный ум, наблюдая за самим собой.
"Работая над созданием роботов, я внимательно присматривался ко всему, что мне приходилось делать руками, и пытался представить себе, как мог бы сделать то же самое робот с электронным мозгом. Способность человека к тончайшей координации движений и к оценке возникающих в процессе работы обстоятельств настолько меня потрясла, что я решил серьезнэ заняться телеуправляемыми механизмами..." - пишет известный изобретатель М. Тринг в книге "Как изобретать?".
Промышленные роботы появились в производстве как машины, способные выполнять некоторые функции человека. Прежде всего в их задачу входит перемещение деталей и заготовок либо по заданным заранее траекториям, либо от одной заданной пространственной точки к другой. При рассмотрении аналогичных движений человека, стремящегося попасть рукой в определенное место, можно выделить две основные фазы: динамическую и стабилизирующую. Первая - динамическая - фаза характеризуется высокой скоростью и приближенным направлением движения. Вторая - стабилизирующая - резким снижением скорости и более точным координированием направления, как правило, сопровождающимся колебательными движениями малой амплитуды. Направленное движение происходит при непрерывном зрительном и кинематическом контроле, а конечный результат проверяется осязанием и слухом.
Движение исполнительного механизма современного промышленного робота первого поколения характеризуется теми же фазами, но в стабилизирующей фазе отсутствуют поисковые колебательные движения вблизи конечной точки. Координаты этого положения должны задаваться и воспроизводиться жестко, объекты манипулирования должны располагаться точно в предусмотренном программой месте и точно в таком положении, в котором робот сможет их взять. Ведь робот первого поколения - это "слепой", не имеющий обратной связи механизм.
Человек порой не осознает, как он выполняет то или иное сложное движение: завязывает ботинки, застегивает пуговицы, ставит свою подпись и т. п. Мы выполняем многое рефлекторно, как результат длительной тренировки координации движений, моторики и ориентации.
Вы замечали, как малыш тянется ручками к игрушке, которую он не в состоянии достать? Это он учится координировать зрительные образы с длиной своих рук.
В то же время человеку так и не удается достичь в этом "робототехнического совершенства". Такой элементарный для робота двигательный приказ, как "передвинь руку на пятнадцать сантиметров вверх", с закрытыми глазами человеку практически выполнить невозможно.
Чтобы понять хотя бы приближенно масштаб проблемы, проведем следующий опыт. Оторвитесь на мгновение от книги и посмотрите вокруг. Зафиксируйте расположение предметов в комнате, на столе, на диване.
Теперь закройте глаза, встаньте со стула или кресла и, не открывая глаз, пройдитесь по комнате, возьмите какой-нибудь предмет, скажем, вазу с цветами и переставьте ее на несколько метров в сторону, на другой стол или тумбочку. Ну как, получилось? Независимо от успеха вашего "манипуляционного акта" вы можете себе представить, какие трудности подстерегают движущуюся руку робота и сколько проблем приходится решать его системе управления.