*
Для данного образца были определены сжимаемость и скорости прохождения сейсмических волн в диапазоне давлений до 27 килобар (рис. 18).
Рис. 18. Скорости прохождения сейсмических волн и сжимаемость железо — магний - кремниевого сплава в диапазоне давлений до 27 кбар, за пределами этого интервала – экстраполяция. Точками показаны скорости и плотности в породах типа оливиновых габроноритов.
Согласно этим данным при давлении 11 килобар, что соответствует глубине 35 км, плотность становится равной 3,1 г/см3, а скорость 7,6 км/с, что полностью соответствует значениям в аномальной мантии на этих же глубинах. Более того, в «аномальной мантии» геофизики отмечают аномально высокие (для силикатов) градиенты нарастания плотности и скоростей с глубиной, но именно это свойственно исследованному образцу. Таким образом, все геофизические аномальности в глубинном диапире, подпирающем Байкальскую рифтовую зону, становятся нормой, если считать, что в основание коры внедряются не силикаты, а интерметаллические силициды. Мне оставалось только ждать, что покажут исследования теплового потока.
Следует отметить, уже в 70-х годах XX века стало ясно, что в Байкальской рифтовой зоне (БРЗ) складывается парадоксальная ситуация — отсутствует региональная тепловая аномалия. Согласно бытующей точки зрения, такого быть не должно. Последовали новые энергичные исследования, и вот, через 30 лет, получен еще более парадоксальный результат — тепловой поток в БРЗ существенно ниже среднего для Забайкалья. Весной 2002 года в Иркутске в Институте земной коры состоялась защита докторской диссертации В.А.Голубева, в которой было объявлено «что средневзвешенное по площади БРЗ значение теплового потока, учитывающее все полученные к данному моменту величины, составляет лишь 46,1 мВт/м2». Среднее для Забайкалья равно 52± мВт/м2. Фоновое значение для областей этого типа, не затронутых рифтогенезом, составляет 60–65 мВт/м2. Как мы видим, среднее для Забайкалья меньше фонового значения, и это свидетельствует об охлаждающем влиянии глубинного диапира на сопредельные территории. Таким образом, мой сумасшедший прогноз подтвердился (этот прогноз был опубликован в 1992 году в книге, изданной на английском языке в Канаде — «Hydridic Earth…»).
Мы не случайно отклонились от темы «образование океана», это было необходимо для объяснения специфики вулканизма в зонах спрединга. В осевых частях океанов под рифтовыми долинами также располагаются холодные диапиры интерметаллических силицидов. Однако в этих зонах они подходят совсем близко к поверхности планеты, на расстояние порядка 1,5—2-х километров от дна океана. Выше мы уже говорили о том, что на подходе они непременно контактируют с водой и в своей головной части покрываются «шляпой» силикатного расплава, т.к. реакции окисления сопровождаются выделением большого количества тепла. Вместе с тем сами силициды в существенном объеме не плавились, поскольку у них достаточно высокие температуры плавления (Mg2Si — 1102 °C, Si — 1430 °C, FeSi — 1410 °C), высокая теплопроводность (примерно на порядок выше, чем у силикатов), и, кроме того, они ведь холодные. При такой теплопроводности отток тепла из зоны нагрева будет столь эффективен, что просто невозможно поднять температуру в существенном объеме до точки плавления. Это все равно, что пробовать расплавить железный лом, нагревая его кончик, торчащий из ледяной воды.