Первые находки рудных конкреций из глубоководных океанических впадин были сделаны в конце XIX века. Однако лишь к 60-м годам XX столетия стало известно, что океаны богаты многими металлами. Глубоководные илы резко обогащены многими рудными элементами, а в пелагических впадинах (ниже уровня карбонатной компенсации), где осадки не разбавляются карбонатным материалом, дно океанов выстилают железомарганцевые конкреции, в которых концентрации многих ценных металлов еще выше (табл. № 3).
Таблица № 3. Содержание элементов в осадках Тихого океана, % вес. (по данным Скорняковой Н.С.).
Во многих абиссальных впадинах конкреции образуют богатые рудные скопления, в которых запасы металлов (в расчете только на 1 метр мощности донных осадков) в десятки, сотни и тысячи раз превышают континентальные мировые ресурсы меди, никеля, кобальта, марганца. Обогащенные конкрециями прослои неоднократно обнаруживались в толще осадков при бурении дна океанов, что увеличивает (вероятно, еще на порядок) запасы металлов в них.
В 60-х гг. XX века на дне Красного моря выявлены впадины, заполненные горячими рудными илами. В наиболее крупной из них («Атлантис-2») придонный слой мощностью 200 м имеет температуру выше 56 °C, а концентрация солей достигает 27 % (соленость Красного моря — 4 %). Эти горячие илы очень ярко раскрашены и содержат более 50 % Н2О и NaCl. После отмывки солей и высушивания они превращаются в рудный концентрат, содержащий до 45 % железа, до 25 % марганца, до 10 % цинка, до 6 % свинца, а также около 3 % меди, 300 г/т серебра, 5 г/т золота. В дальнейшем во многих местах срединно-океанических хребтов были обнаружены толщи Fe-Mn-карбонатных осадков с богатой примесью свинца, цинка, меди и других элементов. Наконец, следует сказать о богатых сульфидных полиметаллических рудах, генерируемых в настоящее время «черными курильщиками». И можно не сомневаться, что мы узнаем еще много нового о металлогении океанов.
Рис. 21. Распределение марганца в поверхностном слое осадков Тихого океана (по данным Н.С. Скорняковой). Площади содержаниями (в % на бескарбонатное вещество): 1 – 0,2 – 0,5 и меньше; 2 – 0,5 – 1; 3 – 1 – 3; 4 – 3 – 5; 5 – более 5%. 6 – рифтовая зона.
Первоначально считали, что рудное вещество в донных осадках океанов целиком обусловлено сносом растворов и взвесей с континентов. Однако по мере выявления грандиозности этих рудных скоплений, которые к тому же явно тяготеют к зонам, наиболее удаленным от материков, их происхождение стали связывать с вулканическими эксгаляциями. Но геохимические исследования показали отсутствие генетической связи рудного вещества с вулканитами. Более того, карты ареалов рассеяния в донных осадках железа, марганца и многих малых элементов показывают, что источник этих металлов, к примеру, в Тихом океане находится не в центральной и северо-западной его частях, где наблюдается наиболее активный вулканизм, а в его юго-восточной зоне, для которой нехарактерна столь активная вулканическая деятельность. Судя по максимальным концентрациям, именно в срединной части Восточно-Тихоокеанского поднятия расположена «металлоносная» зона, протягивающаяся вдоль оси подводного хребта (рис. 21), которая поставляет гигантские количества металлов. В тоже время базальты из этой зоны не обнаруживают ни признаков глубокой гидротермальной проработки, ни повышенных концентраций металлов. Следовательно, источник рудного вещества не связан непосредственно с процессами магмагенерации, а имеет иную природу. И нужно четко осознавать, что в данном случае не может быть привлечен ни один из известных в настоящее время рудообразующих процессов. Чтобы объяснить появление этих неисчерпаемых запасов, требуется совершенно иной источник металлов, на многие порядки превышающий по масштабам все известные источники руд на континентах.
В рамках предлагаемой концепции этим источником является процесс перерождения интерметаллических силицидов в силикаты, идущий в недрах срединно-океанических хребтов. Интерметаллические соединения сохраняют значительную долю металлического типа связи, отсюда их способность к образованию разнообразных сплавов, а также твердых растворов внедрения или замещения. Поэтому силициды магния, железа и другие интерметаллы могут удерживать в решетках большие количества разнообразных металлов и неметаллов (фосфора, углерода, серы и др.). Силикаты, наоборот, не образуют сплавы с металлами, а их способность образовывать твердые растворы сильно ограничена. Жесткость кремний-кислородных решеток силикатов (обусловленная жесткостью связи Si-O) препятствует образованию структур внедрения, а катион-но-анионный характер кристаллического каркаса ограничивает возможность появления структур типа замещения для многих элементов из-за строения их внешней электронной оболочки. Поэтому изоморфная емкость кристаллических решеток силикатов весьма мала.