Кроме того, гранулиты архея содержат очень мало калия. Это особенно бросается в глаза на фоне исключительно мощной нижнепротерозойской гранитизации, сопровождаемой практически повсеместным калиевым метасоматизмом, который проявился прежде всего в виде микроклинизации. Калиевый полевой шпат — микроклин — в обнажениях обычно имеет красный цвет, и это помогает ориентироваться при полевых наблюдениях на щитах. Когда в маршруте вы замечаете, что привычные серые оттенки пород вдруг сменились гораздо более богатой цветовой палитрой с преобладанием розового цвета (и если это не от граната), то почти наверняка, либо вы вышли из архея в протерозой, либо попали в зону, где архейские гранулиты претерпели калиевый метасоматизм протерозойского или более позднего возраста. Получается, что на протяжении почти двух миллиардов лет от рождения планеты вплоть до начала протерозоя что-то сдерживало вынос литофильного калия в верхние горизонты литосферы. Причина этого будет рассмотрена ниже в специальном разделе 11.2, а здесь мы обсудим остальные парадоксы и загадки, упомянутые в этой главе.
«Геобарический и геотермический парадоксы» автоматически исчезают при допущении расширения планеты. Согласно нашей оценке возможного расширения Земли (см. раздел 8.1), сила тяжести в архее была в 3–3,5 раза больше современной, и в этом случае давления порядка 10 кбар достигались на глубинах 8—10 км, что сразу снимает остроту с «проблемы захоронения». Кроме того, если температура в 650–800 °C достигалась уже на глубине 10 км, то получается, что архейский геотермический градиент был примерно в 2,5 раза выше современного, как и должно быть.
В разделе 4 мы уже говорили про образование литосферы на ранних этапах существования планеты в связи с выносом кислорода во внешнюю оболочку в процессе водородной продувки металлосферы. При этом литосфера нарастала только до определенной глубины. Это связано с трансформацией полупроводникового кремния в металлизированное состояние при давлении в 125 кбар (см. рис. № 10). Растворимость водорода в решетке полупроводникового кремния очень мала, тогда как металлизированный кремний (по свойствам он подобен титану) способен растворять очень много водорода. Вместе с тем давно подмечено: чем выше растворимость водорода в решетке металла, тем эффективнее металл очищается от примеси кислорода. Таким образом, при давлениях, превышающих 125 кбар, кремний (в условиях продувки водородом) не может вступать в химическое взаимодействие с кислородом. Наоборот, происходит очищение металлизированного кремния от кислорода (при малой исходной концентрации кислорода, как в нашем случае). Но при меньших давлениях, когда кремний становится полупроводниковым и растворимость водорода в нем резко уменьшается, образование окисла идет весьма энергично с выделением большого количества энергии (тепла)*.
*
Тепло, выделявшееся при образовании силикатов (это сотни кДж на моль), обеспечивало постоянный подогрев силикатно-окисной оболочки, и она, на протяжении всего процесса своего формирования, вынуждена была пребывать в состоянии тепловой конвекции. Сила тяжести к концу архея была в 3 раза больше современной. Давление в 125 кбар (давление металлизации кремния) достигалось на глубине порядка 130 км, и таковой была мощность архейской литосферы. При тепловой конвекции горизонтальные плечи ячей, как правило, всегда меньше их вертикальной составляющей. Поэтому конвекция в архее могла быть только мелкоячеистой, и характерная размерность архейских структур должна быть в пределах десятков километров, не более.