Проблема дефицита калия является следствием метеоритной модели Земли. В метеоритах мало калия, и если исходная мантия имела такой же состав, как и метеориты, то чтобы собрать калий, содержащийся в земной коре, необходимо было бы очистить от него мантию до глубины примерно в 1200 км. Однако на континентах имеют место мантийные интрузии и вулканиты с нормальным и даже высоким содержанием калия, внедрение которых про-исходило уже после формирования сиалической коры. Вместе с тем генерация этих интрузий заведомо происходила в верхней мантии, и в них часто отсутствуют признаки ассимиляции корового материала. В рамках традиционных представлений (ядро — железное, мантия — силикатная) накопилось много противоречий подобного рода. И чтобы понять, откуда они проистекают, давайте вернемся к исходным посылкам метеоритной модели Земли.
К концу XIX века ученое сообщество пришло к окончательному выводу, что камни, падающие с неба, являются планетарным веществом нашей Солнечной системы. Метеориты стали рассматривать как «строительный мусор», оставшийся после завершения грандиозного проекта формирования планет.
В начале XX века появилась наука сейсмология, и очень скоро сеть станций оказалась достаточной, чтобы обнаружить «сейсмическую тень» от ядра планеты. Таким образом, были подтверждены догадки математиков-механиков (основанные на определении момента инерции планеты) о существовании большого и плотного ядра в недрах Земли. На уровне знаний того времени ядро планеты, конечно же, могло быть только железным, поскольку железо — единственный тяжелый элемент, широко распространенный в природе. Более того, среди «строительного мусора» много железных метеоритов (как раз для ядра), а остальные силикатные (из них якобы и была составлена мантия). Среди силикатных метеоритов наибольшее распространение имеют хондриты, и поэтому в науках о Земле уже давно укрепилось понятие «хондритовой мантии».
В данной связи метеориты привлекли к себе особое внимание исследователей и были подвергнуты тщательному и всестороннему изучению. Вместе с тем и геологи за прошедшее столетие собрали громадный фактический материал и в настоящее время могут кое-что сказать о составе континентальной коры и подстилающей ее мантии. Но если мантия планеты действительно изначально имела хондритовый состав, то из определенного объема хондритов мы легко должны были бы получить состав континентальной коры и состав обедненной мантии, т.е. мантийного рестита, который остается после того, как из хондритов были извлечены коровые элементы. На роль рестита можно определить породы типа дунит-гарцбургитов, которые хорошо изучены. Однако попытка свести баланс по этой схеме (хондриты = кора + мантийный рестит) обнаруживает в исходной (якобы) мантии дефицит одних элементов и явный избыток других. В таблице 3 эта ситуация отражена на малых и следовых элементах (калий для хондритов не является петрогенным элементом).
Таблица 3. Распределение элементов по группам при хондритовом составе мантии Земли.
Таким образом, калий попадает в большую группу дефицитных элементов, и если его все же можно набрать для континентальной коры, очистив преобладающий объем мантии, то хондритовые содержания некоторых других элементов (например, урана) оказываются недостаточными даже при полном их извлечении из всего объема планеты.
С другой стороны никак не меньшая проблема возникает в связи с избыточными элементами, которых в метеоритах в десятки, сотни и даже тысячи раз больше, чем в коре и подстилающей ее мантии. Сторонники изначально хондритовой мантии решают эту проблему допущением дифференциации, которая якобы обусловила захоронение этих элементов на недоступных для нас глубинах (в ядре Земли, например). В рамках традиционных представлений (ядро — железное) такое предположение может показаться оправданным для тяжелых сидерофильных элементов, таких как платина, палладий, осмий, иридий и др.
Однако среди избыточных есть легкий бериллий, у которого ярко выражены литофильные свойства. Его максимальные концентрации отмечаются в грейзенах, пегматитах, щелочных метасоматитах, которые, в свою очередь, проявляются только в блоках континентальной коры с хорошо развитым гранитным слоем. Невозможно предположить, что этот литофильный элемент в процессах дифференциации опускался вглубь планеты вместе с тяжелыми сидерофилами.
Кроме того, среди избыточных есть германий, который (в силу своей гомеофильности) относится к геохимическому классу рассеянных элементов. У этого элемента нет склонности концентрироваться в какой-либо петрогенетической формации. Так вот, в метеоритах его на порядок больше в сопоставлении с любой породой коры или мантии. Спрашивается: куда он подевался, если мантия изначально была хондритовая? *