Следует указать, что каждый из перечисленных генетических опытов сопровождается строгими контрольными опытами с теми же объектами, находящимися в обычных для них условиях. Это обеспечит объективную оценку результатов генетических исследований. Эти исследования только начинаются, и, несомненно, они будут продолжены и явятся непременной очень важной частью работ, связанных с дальнейшими космическими полетами. Познание законов наследственности и управление ими — одна из важнейших задач современного естествознания. Выход человека в космос знаменует начало новой главы в развитии генетики, главы, посвященной познанию закономерностей влияния факторов космических полетов на наследственность и эволюцию, разработке методов защиты от вредных влияний этих факторов и использования их положительных эффектов. Генетические исследования на втором корабле-спутнике — лишь первые шаги в этом направлении.
В плане длительных полетов будущего остро встает проблема регенерации воздуха герметических кабин и обеспечения экипажа корабля пищей. Уже простые расчеты показывают, что использование для этих целей химических реагентов и запасов пищи, взятых с Земли, привело бы к очень большому начальному весу корабля, так как в этом случае взятые с Земли реагенты и пища, по мере их использования в пути, не будут воссоздаваться вновь. Вместе с тем в масштабах всей нашей планеты эти процессы — поглощение углекислоты, выделение кислорода и синтез сложных органических веществ из полностью окисленных — осуществляются в листьях зеленых растений в результате фотосинтеза.
Поэтому возникло предположение о необходимости создания на космических кораблях для целей регенерации воздуха и получения пищи так называемых Оранжерей, зеленых растений, которые, поглощая выделяемую живым организмом углекислоту, воссоздавали бы пищу и выделяли кислород. Наиболее пригодными для этих целей оказались микроскопические зеленые водоросли, которые очень быстро развиваются, отличаются большой активностью фотосинтеза и рядом других ценных качеств.
Эти соображения определили необходимость изучения влияния условий космического полета на сохранение жизнедеятельности зеленых водорослей. Находившаяся на борту корабля хлорелла была помещена в специальных ампулах в различном физиологическом состоянии: на косом агаре и в жидкой питательной среде при различной плотности суспензий. При этом водоросли находились как на свету, так и в темноте. Полученный материал подвергается детальному анализу. Изучаются общее состояние суспензий, морфология клеток, активность фотосинтеза, процессы роста и развития культуры, изменение наследственных свойств культуры.
Уже сейчас можно сказать, что биологический эксперимент на втором кораблеспутнике является очень существенным вкладом в дело изучения и освоения космического пространства человечеством.
Все многочисленные биологические объекты, летавшие в космическом корабле, вернулись на Землю живыми, в хорошем состоянии. Состояние собак Белки и Стрелки, мышей, крыс и всех остальных биологических объектов, по предварительным данным, не обнаруживает заметных отклонений от норм. В настоящее время ведется углубленное и систематическое исследование и обработка имеющихся материалов.
Полученные результаты говорят о том, что разработанные отечественной наукой средства, обеспечивающие условия жизнедеятельности, безопасности полета и возвращения из космического полета животных и человека, вполне себя оправдали.
Исследование космических лучей
Вопрос о химическом составе первичного космического излучения тесно связан с проблемой происхождения космических лучей, с механизмом генерации космического излучения и распространением космических лучей в межзвездной среде. Весьма существенным является вопрос о количественном соотношении различных групп ядер в первичном космическом излучении.
На втором космическом корабле была размещена аппаратура, с помощью которой возможно получить данные о составе космических лучей в интервале ядер от гелия до кислорода. Для этой цели использовались черенковские счетчики, управляемые телескопическим устройством из галогенных газоразрядных счетчиков.
При прохождении частиц космического излучения через прибор в заданном телесном угле срабатывала схема совпадений, импульс в которой открывал канал фотоумножителя. С коллектора фотоумножителя снимался сигнал, возникавший при пролете через него ядра, вызывавшего в детекторе черенковское свечение. Амплитуда импульса на выходе черенковского счетчика пропорциональна квадрату заряда ядра. С помощью специального устройства сигналы различных амплитуд преобразовывались в сигналы соответствующей длительности, на которые накладывались импульсы от стандарт-генератора. Число импульсов, заполнявших каждый сигнал, сосчитывалось счетной схемой и передавалось на телеметрическую систему.