Связки.
Тестирование связок аналогично тестированию сухожилий в том плане, что нагрузка растяжения подается на изолированную связку, и затем строится график ее поведения (кривая «нагрузка-деформация»). Вязкоупругое поведение связок характерно наличием области крипа и «напряжения-расслабления». Связки показывают крип при применении фиксированной нагрузки, причем длина связки продолжает увеличиваться либо до точки достижения нового равновесия, либо до точки разрыва. Напряжение-расслабление наблюдается тогда, когда связку растягивают до фиксированной длины и в таком состоянии удерживают; со временем количество нагрузки на связку уменьшается (связка «расслабляется»). Полагают, что нагрузка уменьшается за счет ее ослабления в вязком компоненте связки. Нагрузка ослабевает, пока в связке не достигается новая точка равновесия. Постоянные взаимные подстройки друг под друга поведения вязкого и упругого компонентов позволяют связке функционировать без повреждений в достаточно широком диапазоне нагрузок. Физиологической реакцией связок на переменную нагрузку растяжения является рост толщины и силы связки. Связки являются более изменчивыми, чем сухожилия, так как они выдерживают усилия сжатия и сдвига так же хорошо, как нагрузки растяжения.Хрящ.
По Cohen и Mow, в хряще действуют три силы, направленные на уравновешивание нагрузок и ответственные за вязкоупругое поведение хряща. Этими силами являются:1) напряжение, развивающееся во внеклеточной матрице;
2) давления, развиваемые в жидкой фазе;
3) фрикционная тяга, вызванная током жидкости через внеклеточную матрицу.
Сжатие хряща вызывает изменение его объема. Объемные изменения ведут к изменению давления, что создает ток интерстициальной жидкости. Ток жидкости через внеклеточную матрицу создает значительно сопротивление трения току в тканях (фрикционная тяга). Во время крипа, вызванного силой сжатия, выход жидкости сначала идет быстро и вызывает быструю сопутствующую деформацию. Далее ток жидкости и деформация постепенно уменьшаются и прекращаются, когда напряжение в хряще приходит в равновесие с действующей нагрузкой. Исследования с помощью ядерного магнитного резонанса (ЯМР) дали возможность изучения изменений объема и толщины хряща в живых суставах. При ЯМР — исследовании коленных суставов 8 добровольцев, Eckstein и соавторы обнаружили, что в течение 3–7 мин после нагрузки (50 сгибаний колена) хрящ коленной чашечки теряет до 13 % жидкости.
В результате усилий сжатия, в хряще возникают и напряжения растяжения, так называемые «напряжения типа обруча». Хотя поведение хряща при растяжении аналогично поведению связок и сухожилий в том, что все эти ткани показывают нелинейные реакции на растяжение, причина такого поведения в хряще несколько иная. Нелинейная деформация в подошвенном регионе кривой вызвана силой тяги, которая требуется для того, чтобы решетка коллагена проскользнула через ПГ. Нелинейное поведение в связках и сухожилиях связано с выпрямлением коллагеновых волокон. В хряще, как и в связках и сухожилиях, волокна коллагена натягиваются в линейной области кривой и демонстрируют линейный характер поведения. Однако образцы, взятые из различных зон хряща (I, II, и III) показывают различия реакций растяжения. Эти различия связывают с разной ориентацией волокон коллагена в этих зонах и считают, что именно они и представляют собой анизотропный эффект. Сопротивление хряща сдвигу зависит от количества имеющегося коллагена, поскольку ПГ оказывают сдвигу незначительное сопротивление. Напряжения сдвига развиваются в зоне перехода между отвердевшим слоем хряща и субхондральной костью.
Свойства соединительной ткани, описанные в главе 15, служат для читателя введением в природу компонентов сустава и должны помочь читателю понять основы структуры и функции сустава. Следующие главы 16 и 17 включают в себя традиционную систему классификации суставов человека и подробное описание структуры и функции синовиального сустава.
Глава 16
АРХИТЕКТУРА СУСТАВА ЧЕЛОВЕКА
Понимание того, насколько сложно устроен сустав человека, приходит, когда рассматриваешь структуру его костных компонентов и функции, которые этот сустав должен выполнять. В скелете человека насчитывается около 200 костей, которые должны соединяться суставами. Размер этих костей различен: дистальная фаланга мизинца ноги — размером с горошину, а бедренная кость — свыше 40 см длиной. Форма костей может быть круглой, а может быть плоской, контуры концов костей могут быть как выпуклыми, так и вогнутыми. Задача создания набора суставов для соединения всех этих разнообразных компонентов и создания из них устойчивой структуры может оказаться очень трудной. Задача по проектированию таких суставов, которые могли бы работать вместе, одновременно обеспечивая как устойчивость, так и подвижность всей структуры, представляет собой сложнейшую инженерную проблему.