Как вы узнаете ниже, мозг оснащен «встроенной микросхемой», которая частенько воспринимает происходящее в вашем офисе как смертельную битву (см. главу 6), стирает из памяти важные факты, не имеющие эмоциональной окраски (см. главу 5), и побуждает к поеданию неприлично больших порций калорийной пищи (см. главу 2). Иногда вы в силах компенсировать эти странности и заставить мозг преодолеть существующие барьеры, но иногда приходится с этими странностями мириться.
ПРИМЕЧАНИЕ
Эволюция — мощная сила, формирующая мозг, но она действует медленно. Представьте, что компания Microsoft поручила вам создание самого инновационного программного обеспечения для бухгалтерии, вы взяли заказ, ушли в отпуск длиной 100 тыс. лет и вернулись с готовой программой. Программа сможет выполнять свои задачи, но уже не будет идеальной.
«Электропроводка» мозга
До настоящего момента мы рассматривали форму, структуру и историю развития мозга, но все еще не ознакомились с принципами его работы.
Наверное, вы уже знаете, что мозг является гораздо более сложным электроприбором, чем любая электросхема. Но мозг также взаимодействует с химическими веществами, используя крошечные компоненты для передачи информации, контроля настроения и связи с другими органами. Уяснив несколько принципов работы мозговой «электропроводки», вы сможете лучше разобраться с более сложными темами, освещенными в этой книге.
Нейроны
Мозг содержит сотни миллиардов нервных клеток. Эти клетки подразделяются на две группы: нейроны (которым уделяется основное внимание) и глиальные клетки, также играющие важную роль, значение которых часто недооценивают.
Нейроны передают электрические импульсы через мозг и другие органы. Данные разнятся, но наиболее распространенные расчеты показывают, что вы обладаете 100 млрд нейронов (если хотите польстить своему самолюбию, сравните их количество с 300 тыс. нейронов в мозге скромной мушки дрозофилы). Удивительно, что количество глиальных клеток, обеспечивающих питание, защиту, вывод отходов, ускорение и выполняющих другие поддерживающие функции для получающих всю славу нейронов, в 10 раз больше (рис. 6).
При ближайшем рассмотрении нейрон напоминает представителя некой футуристической флоры. Он получает сигналы с помощью древоподобных разветвлений, называемых
ПРИМЕЧАНИЕ
Изображение нейронов на рис. 6 не совсем пропорционально точно. В реальности тело клетки (верхняя левая часть) гораздо меньше, а дендриты, аксоны и их окончания простираются гораздо дальше.
Синапс
Настоящее волшебство происходит, когда электрические импульсы достигают окончания нейрона. В этот момент нейрон выпускает пучок химических элементов в небольшое отверстие —
Как вы уже, наверное, догадались, приведенное выше описание этого сложнейшего процесса внутри черепа сильно упрощено. Перечислим причины сложности системы «электропроводки» мозга.
• Мозг использует различные виды нейротрансмиттеров д ля взаимодействия с различными видами нейронов.
Данные указывают на то, что мозг представляет собой своего рода массу, состоящую из химических элементов и использующую более 100 различных веществ для поддержания связи между нейронами.
• Среднестатистический нейрон связан с несколькими тысячами других нейронов.
• Нейротрансмиттеры не только побуждают нейрон к посылу электрического импульса, но могут также препятствовать его передаче.